

MetroWest*

Portishead Branch Line (MetroWest Phase 1)

TR040011

Applicant: North Somerset District Council
5.6, Flood Risk Assessment, Part 16 of 17
Appendix O Part 3 of 3, Surface Water Drainage Strategy for Portishead and Pill Stations, Haul Roads and Compounds
The Infrastructure Planning (Applications: Prescribed Forms and Procedure)
Regulations 2009, regulation 5(2)(e)
Planning Act 2008

Author: CH2M

Date: November 2019

Surface Water Drainage Strategy for Portishead and Pill Stations, Haul Roads and Compounds- Please note the Project Summary Plans have been superseded by the General Arrangemen Plans, DCO doc no 2.4

Notice

© Copyright 2019 CH2M HILL United Kingdom. The concepts and information contained in this document are the property of CH2M HILL United Kingdom, a wholly owned subsidiary of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright.

Limitation: This document has been prepared on behalf of, and for the exclusive use of Jacobs' client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this document by any third party.

Where any data supplied by the client or from other sources have been used, it has been assumed that the information is correct. No responsibility can be accepted by Jacobs for inaccuracies in the data supplied by any other party. The conclusions and recommendations in this report are based on the assumption that all relevant information has been supplied by those bodies from whom it was requested. Where field investigations have been carried out, these have been restricted to a level of detail required to achieve the stated objectives of the work. This work has been undertaken in accordance with the quality management system of Jacobs.

Document history

Project	Portishead Branch Line (MetroWest Phase 1) Development Consent Order Scheme
Planning Inspectorate Scheme Reference	TR040011
Volume and Application Document Reference	5, 5.6
Document title	Flood Risk Assessment, Part 16 of 17
	Appendix O Part 3 of 3, Surface Water Drainage Strategy for Portishead and Pill Stations, Haul Roads and Compounds
Regulation Number	Regulation 5(2)(e)
Applicant	North Somerset District Council
Lead Author	DB at CH2M

Version	Date	Status of Version
Rev: 01	8/11/19	Application Issue

Contents

1.	Intr	oduction	3				
2.	Ge	neral Approach	3				
3.	Des	sign Criteria	4				
4.	Exc	ceedance flows	5				
5.	Des	sign Approach	5				
6.	De	velopment sites	6				
6	.1	Portishead Station	6				
6	.6	Pill Station Carpark	. 11				
6	.7	Haul roads	. 12				
6	8.8	Temporary Construction Compounds	. 14				
7.	Co	ntributing areas & Runoff assessment	. 27				
8.	Мо	delling	. 28				
9.	Pollution Control & Water Quality29						
10.	Ge	neral Recommendations and Missing Information	. 29				

Appendices

- A North Somerset Levels Internal Drainage Board (IDB) drainage advice and pollution mitigation measures, analysis of Portbury ditch water levels
- B Portishead Station Drainage Strategy Drawings and Calculations
- C Pill Station Drainage Strategy Drawings and Calculations
- D Haul Roads Drainage Strategy Drawings and Calculations
- E Compounds Drainage Strategy Drawings and Calculations
- F Water Quality Risk Management
- G Concept Drainage Design Report Rev 01 from January 2017
- H Project Summary Plans

List of Tables

Table 1. Design criteria	4
Table 2. Parameters for greenfield discharge rate	4
Table 3: Dimensions of the proposed swale at Catchment A.1	7
Table 4: Dimensions of the proposed ditches for Haul roads	13
Table 5 : Dimensions of the alternative proposed haul roads ditches	13
Table 6 : Dimensions of the proposed detention basins for alternative haul roads ditches	13
Table 7: Filter drains for compound to the east of Portishead Station	15
Table 8: Exceedance flood volume	15
Table 9: Dimensions of the French drain for the permanent area for Sheepway Compound	16
Table 10: Filter drains for the temporary area for Sheepway Compound	16
Table 11: Exceedance flood volume for the temporary and permanent areas	17
Table 12: Filter drains for Portbury Hundred Construction Compound	18
Table 13: No. of filter drains needed in each sub-catchment	19
Table 14: Dimensions of the proposed ditches for Portbury Hundred construction compound.	19
Table 15: Dimension of the proposed pipes for Portbury Hundred construction compound	20
Table 16: Dimensions of the proposed attenuation basins for Portbury Hundred compound…	20
Table 17: Basin's volumes for different return periods and permeabilities	21
Table 18: Exceedance flood volume	21
Table 19: Filter drains for Lodway Farm Construction Compound	23
Table 20: Dimensions of the proposed attenuation basin for Lodway Farm compound	24
Table 21: Dimensions of the proposed ditch for the permanent areas Ham Green Compound	.25
Table 22: Exceedance flood volumes	
Table 23: Pre- and post-development areas in Portishead Station	27
Table 24: Pre- and post-development areas in Pill Station	
Table 25: Pre- and post-development areas for Haul Roads	
Table 26: Pre- and post-development areas for compounds	
Table 27: Calculations and associated drawing number for the proposed drainage options of	
development areas	28

1. Introduction

- 1.1 The four West of England authorities North Somerset Council ("NSC"), Bristol City Council ("BCC"), Bath and North-East Somerset Council ("B&NES"), and South Gloucestershire Council ("SGC") are jointly promoting a programme of rail enhancement projects known as MetroWest. The MetroWest programme includes MetroWest Phase 1, MetroWest Phase 2 and smaller projects such as specific new/re-opened stations. MetroWest Phase 1 is being led by NSC on behalf of the four councils as a third party rail project working with Network Rail Infrastructure Limited ("NRIL"). MetroWest Phase 1 involves providing a new train service between Portishead, Pill and Bristol Temple Meads, an upgraded train service for the Bristol to Avonmouth and Severn Beach line, and local stations between Bristol and Bath
- 1.2 The scope of this drainage strategy is to outline the drainage design works for the MetroWest scheme development sites as detail below:
 - Pill station carpark and drop-off area
 - Portishead station carparks and associate roads
 - Construction compounds:
 - Haul roads (temporary compound)
 - East of Portishead Station (temporary compound)
 - C15 Sheepway (permanent and temporary compounds)
 - C14 The Portbury Hundred (temporary compound)
 - C13 Lodway Farm (temporary compound)
 - C9 Ham Green (permanent and temporary compounds)
 - C4 Clanage Road (permanent and temporary compounds)
- 1.3 The design approach sets out the rationale behind the development of the surface water drainage strategy.
- 1.4 The selection and application of SuDS solutions has also been determined with respect to the confines and nature of the proposed development.

2. General Approach

2.1 In developing this drainage design, a number of assumptions have been made to reflect the design development stage at the time of writing. For the construction stage, a conservative approach has been taken. This assumes that any contractor would surface all the construction compounds such that they would be considered impermeable. It is recognised that this may well not be the case with a wide range of options available to contractors which offer more porous surfaces, and that not all the construction areas would be surfaced.

Nevertheless, the adoption of this worst-case scenario does mean that generally, the maximum requirements are presented and that actual drainage proposals by contractors are likely to have less in the way of drainage requirements during construction.

3. Design Criteria

3.1 The design criteria used, detailed in table 1 below, are according to North Somerset Council's (NSCs) requirements for a design life of 60 years for the drainage system in the permanent development sites and for a design life of 1-2 years for the temporary development sites.

	Design return period	Exceedance flows return period	Climate change allowance
Permanent development sites	1:30	1:100	40%
Temporary development sites	1:30	1:100	10%

Table 1. Design criteria

- 3.2 Maximum discharge rates:
 - For green-field sites: green-field peak rate or max. of 2.5 l/s
 - For pre-developed sites: green-field peak rate or min. of 2.5 l/s if attenuation is possible, otherwise a reduction of 30% for the existing discharge rate.
 - For Pill Station and Portishead Station- based on the Concept Drainage, attached on Appendix G.
- 3.3 Table 2 shows the parameters considered for the greenfield discharge rate calculations. The whole scheme falls within hydrological region no. 8.

Site	SAAR (Standard Average Annual Rainfall) (mm)	SPR (Standard Percentage Runoff)
Portishead Station	889	0.15
Pill Station	882	0.4
Haul Roads	827	0.37
Compound east of Portishead Station	894	0.15
C-15 Sheepway Compound	827	0.37
C-14 Portbury Hundred Compound	841	0.37
C-9 Ham Green Compound	839	0.47
C-13 Lodway Farm Compound	841	0.37
C-4 Clanage Road Compound	836	0.15
T 11 2 D	C C: 1.1.1: 1	

Table 2. Parameters for greenfield discharge rate

- 4.1 Exceedance flows would normally be expected to inundate the drainage system and therefore the design approach was to convey and store exceedance volumes above ground until there is sufficient capacity within the drainage system to accept inflows again (i.e. after the storm event has passed).
- 4.2 The management of exceedance flows is an integral part of the overall site design and as such, will be allowed for in the drainage design.
- 4.3 Exceedance routes up to the 1 in 100-year rainfall event, with an allowance for climate change have been included at the drainage strategy and demonstrate that any exceedance flow will be managed within the site extents.

5. Design Approach

- 5.1 In accordance with the National Planning Policy Framework and the relevant planning practice guidance¹, surface water runoff will be managed as close to where it falls as possible to mimic natural drainage. North Somerset Sustainable Drainage Developer Guide² (NSSDDG) also states that treating the runoff at source is important and their preferred option is to treat and convey the runoff on the surface.
- 5.2 NSSDDG indicates where infiltration SuDS can be potentially used within the authority's area. The guidance recommends that where soils may be slow draining, have a shallow water table, are located on floodplain deposits, or have some combination of these characteristics, infiltration is not recommended. In this case the preferred storage forms are: ponds, porous pavement layer with impermeable membrane or wetlands. Based on the NSSDDG maps, the proposed development areas in Portishead Station and Haul road have significant constraints for infiltration SuDS since they're located within flood zones 2 or 3.
- 5.3 Consequently, infiltration is not recommended in the proposed development areas. Instead, a combination of traditional drainage and SuDS including bioretention areas, permeable pavement, detention basins, filter drain and swales, are promoted to ensure pollutants in surface water flows are minimised and exceedance flow paths are managed.
- 5.4 The drainage provisions promoted to support the development sites (Portishead Station, Pill Station, haul roads and the compounds) are detailed in Section 5, and on the associated drawings presented in Appendix B, C, D, and E.

¹ Planning Practice Guidance: [https://www.gov.uk/government/collections/planning-practice-guidance]

² North Somerset Sustainable Drainage Developer Guide: [http://www.n-somerset.gov.uk/wp-content/uploads/2015/12/sustainable-drainage-developer-guide.pdf]

5.5 Surface water drainage calculations have been undertaken using MicroDrainage WinDES software. The calculations establish the type and sizing of drainage assets promoted to manage the surface water runoff. These calculations are presented within Appendices B, C, D and E for each development area respectively.

6. Development sites

6.1 Portishead Station

6.1.1 The proposed drainage for the carparks and highways work at Portishead Station have been analysed on a catchment basis. Four catchments have been identified as shown on drawing 467470.BQ.04.20-DS-Portishead of Appendix B.

6.2 Catchment A.1

- 6.2.1 Catchment A.1 lies to the northwest of the proposed development including the proposed car park and footpaths. The area is currently part of the former railway line and scrub area.
- 6.2.2 Specifically, the development area will discharge to the watercourse to the north west of the site. This watercourse is a main river, Portbury Ditch, under the EA jurisdiction. The EA has verbally advised that the discharge rate into the ditch shall be set by NSC flood authority. North Somerset Levels IDB has confirmed that all the impermeable areas including the parking should be discharged at greenfield rates and volumes or 2.5l/s as the minimum practicable (refer to Appendix A).
- 6.2.3 As described in section 4 of this document, infiltration is not considered to be a viable option for this area and thus it is proposed to collect the runoff water through permeable pavement (concrete block paviours) in the southern parking bays (aisles to remain asphalt), with a 300 mm deep clean stone reservoir layer which extends beneath the adjacent footpath.
- 6.2.4 The runoff will be attenuated within the 300mm depth of clean stone reservoir layer which will also provide treatment as the water flows through the stone and the geotextile membrane. The water will then be conveyed in a linear swale with check dams spaced every 54m (that include an orifice at the invert level of the swale) which will provide storage and attenuation. The connection between the reservoir layer and the swale will be made by a 100mm pipe. The discharge to Portbury Ditch is designed to be limited to 2.5l/s by flow control at the chamber downstream the swale outlet.
- 6.2.5 For further details, refer to DRG. 467470.BQ.04.20-DS-Portishead in Appendix B.
- 6.2.6 The suggested dimensions of the swale can be found in Table 3:3 below.

Swale	Approx. length (m)	Depth (m)	Base width (m)	Side Slope (1:x)	Top width (m)	Greenfield runoff (l/s) for 1in30 yr	Admissible peak flow (I/s) for 1in30 yr
1	275	0.450	1	4	4.6	0.6	2.5

Table 3: Dimensions of the proposed swale at Catchment A.1

6.2.7 The analysis of water levels, in vicinity of the proposed Portbury Ditch outfall, for 25 year and 50 year climate change (assumed to be 20%) scenarios are 4.85m and 7.05m respectively. For a 1 in 30 year event this has been interpolated as 5.29m (refer to Appendix A). A capacity check with Microdrainage software has been undertaken and confirms that both the swale and the permeable pavement are suitable for this tide lock level of 5.29m for a 1 in 30 year including an allowance of 40% climate change.

Exceedance flows

6.2.8 Exceedance flow, based on 1:100 return period plus 40% allowance for climate change, is designed to be managed within the footprint of the carpark, to allow the water level to rise from the drainage system up to 16mm above surface at the lowest points of the carpark. The total flooded volume for the 100yr return period is 177m³. The southern swale top embankment should be raised by 100mm above the footpath level to contain exceedance volumes within the carpark.

Further work

- 6.2.9 The existing ditch should be surveyed (connectivity and levels) to investigate connection for discharging.
- 6.2.10 The Environment Agency should be contacted to agree discharge point.

6.3 Catchment A.2

- 6.3.1 Catchment A.2 lies to the north of the proposed Portishead railway station and includes the diversion of an existing road and roundabout. The diverted road and new roundabout will tie into Harbour Road to the west and Phoenix Road to the east of the existing roundabout.
- 6.3.2 There is an existing surface water drainage network in this catchment area, which is identified on Wessex Water services plan as a highway drain. The existing highway runoff discharges via 225mm pipe into 'The Cut' watercourse on the north-east of the area (shown on the Appendix B drawings as the proposed discharge point). This approach is based on the Concept Drainage Report attached in Appendix G.
- 6.3.3 For determining the discharge flow rate from this catchment, an assessment has been carried out to calculate the existing discharge rate for the pre-development site (impermeable catchment of 3,130 m²). A MicroDrainage model was created for this purpose to simulate the existing drainage system, based on the assumption that the existing drainage system was designed for no-surcharge during 1:1 year rain event with no climate change allowance (See Calculations at

- Appendix B). The model results showing existing peak flow of 65 l/s for 1:30 return period. As recommended in the North Somerset Sustainable Drainage Developer Guide, a reduction of 30% has been applied to restrict the proposed drainage discharge to 45.5 l/s.
- 6.3.4 It is proposed that the road area will fall into three bio-retention areas, where the runoff water will settle and infiltrate into porous layer which will outfall to proposed drainage pipe. This system will include an overflow set to 150 mm below road level. For the areas where draining into the bio-retention areas is not viable, trapped-gullies are proposed to collect the run-off discharging into the proposed sewer. For attenuation, off-line storage of 9 m³ and 22.5 m³ are proposed to be located beneath the bio-retention areas. The proposed drainage pipeline of 225mm diameter will convey the runoff from the bio-retention areas along Phoenix Way to discharge into the existing watercourse, as shown in Drawing 467470.BQ.04.20-DS-Portishead on Appendix B.
- 6.3.5 For limiting the outfall flow rate, an orifice flow control is proposed before the discharge point.
- 6.3.6 The proposed runoff will be treated by a combination of filtration through the bioretention areas (vegetation, soil and filter material), or in other locations by trapped-gullies and a subsequent bypass oil separator before discharge.

6.3.7 The proposed drainage system will surcharge during 1:100 years rain event without flooding to the highway.

Further work

- 6.3.8 During detailed design, survey should be included to assess the capacity of the existing drainage highway network, to include the existing discharge structure.
- 6.3.9 As depth of the drainage system might be limited due to tide-lock level of 5.29m, alternatives of slot-drain or beany blocks should be considered during detailed design to replace the drain sewer at the upstream of the system.

6.4 Catchment A.3

- 6.4.1 Catchment A.3 lies to the south of the proposed railway station and includes a new road and footways that tie into Quays Avenue. The impermeable area for this catchment is 2,918m².
- 6.4.2 There are no available Wessex Water sewer records of an existing surface water drainage network on Quays Avenue, other than gullies. Therefore, it is assumed that a highway pipe network is present. The existing impermeable area for this catchment is 2,166m².
- 6.4.3 For determining the discharge flow rate from this catchment, an assessment has been carried out to calculate the existing discharge rate for the pre-development.

- A MicroDrainage model was created for this purpose to simulate the existing drainage system, based on the assumption that the existing drainage system was designed for no-surcharge during 1:1 year rain event with no climate change allowance (See Calculations at Appendix B). The model results showing existing peak flow of 52 l/s for 1:30 return period. As recommended in the North Somerset Sustainable Drainage Developer Guide, a reduction of 30% has been applied to restrict the proposed drainage discharge to 35 l/s.
- 6.4.4 An option is that the highway runoff would be captured by a dry swale on the west side of the highway as shown in Drawing 467470.BQ.04.20-DS-Portishead. The carriageway would be profiled to drain to the west side of the catchment into the proposed swale with filter drain.
- 6.4.5 An alternative would be to capture the highway run-off to the east and into the open space to the south of the station building.
- 6.4.6 Site constraints would mean this catchment would be drained through a mix of filter drain and swale. On the west side for example, between the proposed bus stop and the catchment boundary, the upper part of the catchment will need to be drained by a filter drain as there is not enough room to accommodate a swale. On the east side the area available for a swale is constrained by the footpath at the junction at Galingale Way needing a pipe connection into the existing highway drainage.
- 6.4.7 The filter drains would be generally 1.5m deep by 1.5m wide and incorporates a 225mm perforated pipe to convey the runoff. Where sufficient space is available, a dry swale would be proposed. The swale slopes would be set to 1 in 4 as recommended in the SuDS Manual to prevent erosion channelling from lateral inflows, thus giving a swale of generally 0.35m deep. The width and depth would vary depending in the space available. The swale would be the fall of the proposed highway with a longitudinal gradient ranging from 1 in 50 at the top to 1 in 80 at the end.
- 6.4.8 The swale would be a lined under-drained swale, which will allow the infiltration of the runoff into the filter trench beneath the base during the more frequently occurring storms to provide treatment of the most contaminated runoff. The swales sides and infiltration trench would be lined with an impermeable membrane to ensure that flows are treated before discharge and not infiltrated directly to the ground.
- 6.4.9 Check dams are promoted along the swale to restrict peak flows and enhance infiltration to the filter trenches. The check dams would be spaced every 20m and set at 0.15m below the top level of the swale to keep a reasonable freeboard.
- 6.4.10 The swale would discharge into the existing drainage network on Quays Road. A flow control system will be included in the most downstream chamber to restrict flows at 35l/s as calculated before.

6.4.11 Exceedance flow, based on 1:100 return period plus 40% allowance for climate change, is designed to be managed within the footprint of the dry swale and the adjacent footpath without affecting the proposed highway. The hydraulic model showed that the total flooded volume is 14m³. The flooded volume will exceed the system from the downstream end and will be temporally stored on the surface of the system and the adjacent footpath until the drainage system has enough capacity to deal with those flows.

Further work

- 6.4.12 Existing manholes and drainage system to be surveyed (CCTV, connectivity and levels) to investigate connection for discharging.
- 6.4.13 Assess the capacity of the existing highway drainage network.

6.5 Catchment A.4

- 6.5.1 This catchment is located at the north east of the development area and includes the station car parking and hardstanding by the Portishead station. The site's impermeable area is 3,689 m².
- 6.5.2 Runoff will be collected via linear drainage channels, which will feed into a shallow (300mm deep) geocelullar crate system located beneath the parking bays. The runoff will be treated in several steps as it passes through the drainage network as set out below:
 - 1. Runoff passes into the Permachannel unit which traps silt and coarse particles.
 - 2. Runoff leaves the Permachannel by a diffuser unit which provide a further filtration of oils.
 - 3. Runoff then reaches the first geocellular crate which is fitted with a 'Biomat'. The Biomat geotextile traps oils and other hydrocarbon based floatable contaminants and biodegrades these.
 - 4. Runoff will then leave the Permavoid geocellular crates by an orifice plate flow control before discharging into a watercourse.
- 6.5.3 The run-off discharge from the car-park will be restricted to max flow rate of 2.5 l/s as there is enough room available to attenuate flows at greenfield runoff peaks or a minimum practicable of 2.5l/s.
- 6.5.4 Proposed discharge point is to the proposed highways drainage system for Catchment A.2, which outfalls into 'The Cut' watercourse to the north east of the compound as shown in drawing no. 467470.BQ.04.20-DS-Portishead in Appendix B.
- 6.5.5 For modelling purposes, the car-park has been divided into three sub-catchments therefore, three sets of calculations are attached in Appendix B.

6.5.6 Exceedance flow, based on 1:100 return period plus 40% allowance for climate change, is designed to be managed within the footprint of the carpark, to allow the water level to raise from the Geo-cellular storage and up to 3-11 mm above surface at the lowest points of the carpark. This volume of water is designed to be held by the pavement kerbs. During an exceedance event, the discharge flow rate can reach a peak of 4 l/s for a duration of 500 minutes.

Further work

6.5.7 During detailed design, the existing drainage system should be surveyed (CCTV, connectivity and levels) to assess the capacity and consider discharging to it.

6.6 Pill Station Carpark

- 6.6.1 Pill station carpark is located between the railway line, Monmouth Close and Avon Road. The catchment area of the carpark is 1,488 m².
- 6.6.2 Surface water runoff from the car park up to the 30 year return period plus a 40% allowance for climate change will be collected through permeable pavement (concrete block paviours) in the parking bays (aisles to remain asphalt), with a clean stone reservoir beneath (this does not extend beyond the parking bays). The runoff will be attenuated within 330mm depth of clean stone (reservoir layer) which will also provide treatment as the water flows through the stone and the geotextile membrane. The reservoir layer will outfall through an orifice flow control limited to 5 l/s (based on the Concept Drainage Design Report Rev 01 from January 2017 refer to Appendix G).
- 6.6.3 The proposed discharge from the reservoir layer will connect into the existing highway drainage system on Avon Road.
- 6.6.4 The drop-off area located at Station Road is proposed to be drained in a similar approach with permeable pavement and reservoir layer beneath the three disabled parking spaces. Discharge will be into the existing highway drainage on Station Road.

Exceedance flows

6.6.5 Exceedance flows, based on 1:100 year return period plus 40% allowance for climate change, are designed to be managed within the footprint of the carpark. During an exceedance event, water level will surcharge the subbase pavement layer but it will emerge on the carpark surface. The discharge will reach a peak of 5.2 l/s for a duration of 100 minutes.

Further work

6.6.6 Existing manholes and drainage system in Avon Road and Station Road to be surveyed (CCTV, connectivity and levels).

6.7 Haul roads

- 6.7.1 Surface water runoff from haul roads up to the 30 year return period plus a 10% allowance for climate change will be captured by ditches, with no exceedance flows occurring up to 100 year return period. In case of blockage, exceedance will be temporarily stored on the surface of the haul roads until sufficient capacity is available within the drainage network.
- 6.7.2 The temporary haul roads will lie alongside the railway for 1,290m between Portishead and Portbury Hundred construction compound. The haul roads will be approximately 8m wide and the running surface is assumed to be constructed of a Clause 803 (SHW) Type 1 sub-base. Although this granular material is not totally impermeable, the catchment areas of the haul roads have been assumed to be 100% impermeable for the calculations.
- 6.7.3 Check dams will be promoted along the proposed ditches to capture sediment and minimise contaminated runoff being discharged to downstream watercourses. The accumulated silt will need to be removed and disposed of periodically. The spacing of check dams will depend on the longitudinal slope of the ditches which is still uncertain due to the absence of proposed ground model. The calculations to size the ditches have assumed a relatively flat gradient of 1 in 400 for all the ditches draining the haul roads. The design will need to be checked to confirm that it is adequate when the proposed ground levels are available.
- 6.7.4 It is recommended to undertake a survey of the conditions and capacity in the receiving watercourses prior to works commencing onsite and on completion in order to confirm there is no larger silt deposits due to the works.
- 6.7.5 Discharge from the ditches need to be attenuated at greenfield runoff rates or 2.5l/s as the minimum practicable. Vortex flow controls (VFCs) or other types of flow control will be used to achieve the discharge requirements. As runoff peaks are going to be attenuated at greenfield rates, the removal of contaminants through settling and adsorption will be enhanced.
- 6.7.6 The haul roads will cross existing drainage ditches that will need to be culverted during the duration of the works and subsequently reinstated on completion. A hydraulic assessment should be carried out to estimate the culvert diameter with the minimum requirement being 750mm diameter.
- 6.7.7 The suggested dimensions of the ditches can be found in Table 4: and the alignment and discharge points are presented in Drawing 467470.BQ.04.20-DS-Haulroads in Appendix D.

Ditch	Approx. length (m)	Depth (m)	Base width (m)	Side Slope (1:x)	Top width (m)	Greenfield runoff (I/s) for 1 in 30 yr	Permissible peak flow (I/s) for 1 in 30 yr
D1	376	0.8	0.8	1	2.4	2.2	2.5
D2	297	0.8	0.7	1	2.3	2	2.5
D3	187	0.7	0.5	1	1.9	1.2	2.5
D4	343	0.9	0.5	1	2.3	2	2.5
D5	87	0.6	0.5	1	1.7	0.7	2.5
D6	297	0.8	0.7	1	2.3	2	2.5

Table 4: Dimensions of the proposed ditches for Haul roads

6.7.8 During detail design, if there is not enough room to accommodate the proposed ditches alongside the haul roads, shallower and narrower ditches could be promoted, with attenuation taking place in detention basins before the discharge to the receiving watercourses, subject to sufficient space being available at the discharge points to accommodate the basins. Runoff from the haul roads will be conveyed by the ditches and piped to the detention basins. The discharge from the basins would be restricted by flow controls. The suggested dimensions of the ditches and detention basins can be found in Table 5 and Table 6 below.

	Approx. length (m)	Depth (m)	Base width (m)	Side Slope (1:x)	Top width (m)	Pipe outlet (mm)
D1 and D2	673	0.4	0.5	1	1.3	300
D3, D4, D5 and D6	617	0.4	0.5	1	1.3	Twin 300

Table 5: Dimensions of the alternative proposed haul roads ditches

Basin	Approx. base area (m²)	Approx. base area (m²)	Volume available (m³)	Depth (m)	Side Slope (1:x)	Greenfield runoff (I/s) for 1 in 30 yr
D1 and D2	201	452	326.5	1	4	4.3
D3, D4, D5 and D6	361	680	512.2	1	4	5

Table 6 : Dimensions of the proposed detention basins for alternative haul roads ditches

6.7.9 There is an option to connect the runoff from the Haul roads to the adjacent track drainage, subject to Network Rail consent, rather than constructing a new drainage system. At this scenario, the proposed ditches (No.1 – 6) will not be required. In addition it is like that the surfaced width of the haul road would be reduced.

6.8 Temporary Construction Compounds

6.8.1 Introduction

- 6.8.1.1 This section includes the drainage strategy for the construction compounds. The compounds listed below are not included in the scope of this report:
 - Compound to the north of Portishead station (refer to sheet 1 of Appendix H). For this area, it is assumed the car park would be implemented and used as a compound with its drainage design as described above (refer to Drawing 467470.BQ.04.20-DS-Portishead of Appendix B).
 - M5 compound (refer to sheet 6 of Appendix H). This area is already a hardstanding area.
 - Compound located between Lodway Farm compound and Pill station car park (the garages by Avon Bridge, refer to sheet 7 of Appendix H). This area is an existing highway.
 - Small compound located to the south-east of Pill station car park, next to Station Road (refer to sheet 8 of Appendix H). Only the design of the drainage of the car park will be undertaken (refer to Drawing 467470.BQ.04.20-DS-Portishead of Appendix B).
 - Small compound located to the west of Watch House Road (refer to sheet 8 of Appendix H). This area was already developed.
 - Compound to the west of Winterstoke Road (refer to sheet 19 of Appendix H). This area is an existing car park.

6.8.2 Compound located to the east of Portishead Station

- 6.8.2.1 The compound to the east of Portishead Station is a temporary site for the construction of Trinity footbridge that will cross over the railway. The compound has an approximate proposed footprint of 0.106 ha. The surface material for the hardstanding of the temporary compound is assumed to be type 1 aggregate.
- 6.8.2.2 It is assumed that the terrain will fall from south-west to north-east. Surface water runoff from this compound up the 30 year return period plus an allowance for climate change of 10% (since this compound is temporary) will be captured by a filter drain installed along in the southern edge of the compound and then then discharge into the Cut at the greenfield runoff rate of 2.5l/s (minimum practicable).
- 6.8.2.3 The suggested dimensions of the filter drains can be found in Table 7 and the alignment and discharge points are presented in Drawing 467470.BQ.04.20-DS-East_of_Portishead in Appendix E.

Approx. length (m)	Depth (m)	Width (m)	Pipe diameter (mm)	No. of pipes at the bottom of the trench
150	1.4	0.45	150	1

Table 7: Filter drains for compound to the east of Portishead Station

- 6.8.2.4 The calculations to size the filter drain assumed a gradient of 1 in 200. The design will need to be checked to confirm that it is adequate when the proposed ground levels are available.
- 6.8.2.5 For pollution control purposes, the filter drain provides water treatment and sediment removal as runoff percolates through the granular material. Additionally, filter drains will be lined with a geotextile for further water treatment and to avoid infiltration of runoff into the ground. It is recommended that at the beginning of the run of the filter drain, a chamber with a grated gully is installed to allow for maintenance. It is recommended to install a bypass separator in case oil handling is proposed within this compound.

6.8.2.6 The construction of a bank surrounding the compound is proposed to control the exceedance flows. The proposed filter drain present flooding for the 1 in 100 year return period event (see Table 8):

Drainage	Exceedance flood volume (m³)		
Elements	30 year return period; 10% allowance for climate change	100 year return period; 10% allowance for climate change	
Filter drain	0	7.6	

Table 8: Exceedance flood volume

Exceedance routes are proposed to be located along the northern edge of the compound towards a green area located to the north-east of the compound. This area has a surface of 1512m².

6.8.3 C15 Sheepway Compound

- 6.8.3.1 Sheepway compound is located at the junction between the railway line and Sheepway Road. The site will include 0.042ha temporary compound and 0.065ha permanent compounds. The design of the compound includes green areas and hardstanding for parking and welfare facilities.
- 6.8.3.2 This compound will include a small amount of parking, welfare facilities and materials storage.

- 6.8.3.3 Only existing topographic data was available at present. The drainage system has been designed to drain from south to north and it should be checked when the proposed ground model is available.
- 6.8.3.4 Surface water runoff from the permanent area of the compound up to the 30-year return period plus 40% allowance for climate change will be captured by a french drain and discharge either to the Network Rail drainage system to the south or to an existing ditch to the west of the site as shown in Drawing 467470.BQ.04.20-DS-C15 in Appendix E. The discharge will occur at greenfield runoff rates or 2.5l/s as the minimum practicable.
- 6.8.3.5 The suggested dimensions of the French drain can be found in Table 9 and the alignment and discharge point are presented in Drawing 467470.BQ.04.20-DS-C15 in Appendix E.

Approx. length (m)	Depth (m)	Width (m)	Pipe diameter (mm)	No. of pipes at the bottom of the trench
 113	1	0.7	150	1

Table 9: Dimensions of the French drain for the permanent area for Sheepway Compound

- 6.8.3.6 Surface water runoff from the temporary area of the compound for the 30 year return period plus 10% allowance for climate change will be captured by filter drain and then conveyed by pipes to discharge into existing ditches at the greenfield runoff rate.
- 6.8.3.7 The suggested dimensions of the filter drain can be found in Table 10.

Approx. length (m)	Depth (m)	Width (m)	Pipe diameter (mm)	No. of pipes at the bottom of the trench
139	1	0.3	150	1

Table 10: Filter drains for the temporary area for Sheepway Compound

- 6.8.3.8 The calculations to size the filter drains assumed a gradient of 1 in 400. The design will need to be checked to confirm that it is adequate when the proposed ground levels are available.
- 6.8.3.9 The proposed footpath shall be drained to the adjacent field. The area at the east side of the compound is recommended to be discharged to the track drainage.

6.8.3.10 For the permanent area, the French drain will flood for the 1 in 100 return period event but there is no flooding for the 1 in 30 return period. There is no flooding for the temporary area in either the 1 in 30 return period event or for the 1 in 100 return period event (see Table 11).

Drainage elements	Return Period (yr)	Climate Change (%)	Exceedance flood volume (m³)
French Drain	30	40	0
French Drain	100	40	4.2
Filter drain	30	10	0
Filter drain	100	10	0

Table 11: Exceedance flood volume for the temporary and permanent areas

- 6.8.3.11 Exceedance routes are proposed to be located at the northern side of the compound as shown in drawing 467470.BQ.04.20-DS-C15 in Appendix E.
- 6.8.3.12 During detailed design, there might be opportunities to propose flooded volumes to be managed within the compound site, once the layout of the compound has been designed.

Further recommendations

- 6.8.3.13 Historic borehole logs undertaken in the vicinity of the compound available in the BGS viewer were used to investigate the ground water flood risk. The highest ground water level encountered in the area was at 4.5m BGL. If during the construction ground water is found close to the surface (ie: 2m BGL), the drainage system will need to be revised to suit the ground water conditions.
- 6.8.3.14 Further consultation with the EA will be undertaken during the detailed design phase to check if compensatory flood storage is required.

6.8.4 C14 Portbury Hundred Compound

- 6.8.4.1 Portbury Hundred compound is located south of Sheepway, between the railway line and the A369 Portbury Hundred highway and to the west of the crossing of Station Road and the A369. It has a proposed footprint of 11.4 ha and the surface is assumed to be constructed of Type 1 aggregate. Although this granular material is not totally impermeable, for the scope of this report it has been assumed that it is completely impermeable for the calculations.
- 6.8.4.2 This construction compound could include a large amount of parking spaces for staff vehicles, storage of materials, offices and welfare facilities. The materials stored could be sleepers, drainage, troughing, energy recovery units for vegetation removal, spoil, ballast and track formation. Plant vehicles will circulate in the area, including dumpers, excavators, dozers and lorries.
- 6.8.4.3 No topographical data was available at present. Therefore, since the existing ditches SG1 and D4 are flowing from north to south, it was assumed the terrain is falling from north to south in this area.
- 6.8.4.4 With the aim of not posing any flood risk to the new railway and to the access track located in the southern edge of the compound, the proposed fall of the

- ground will be towards the south-west and south-east, having a watershed along the axis of the access track up to the northern edge. In case of flooding, only the lower-western and lower-eastern corners of the compound would be affected, keeping the access track and the majority of the compound free of flooding.
- 6.8.4.5 The compound will be then divided into four sub-catchments: A and B and C and D (see drawing 467470.BQ.04.20-DS-C14 in Appendix E for reference).
- 6.8.4.6 Sub-catchments A and B would fall towards south-west, making the ditch in sub-catchment A and the pipe in sub-catchment B tend towards the south. C would fall towards the south-east, making the pipe in this area lean towards the south. D would fall towards the south, making the ditch in sub-catchment D falling towards the south-west, in order to convey the runoff towards the basin located in the southeast corner of sub-catchment C.
- 6.8.4.7 In the scenario set out below, surface water runoff from this compound up the 30-year return period plus an allowance for climate change of 10% (since this compound is temporary) could be captured by filter drains installed in each sub-catchment and then conveyed by ditches or pipes to two attenuation basins, which will then discharge into two existing ditches at the greenfield runoff rate. Obviously a contractor may wish to adopt a different approach.
- 6.8.4.8 The suggested dimensions of the filter drains can be found in Table 12: and the alignment and discharge points are presented in Drawing 467470.BQ.04.20-DS-C14 in Appendix E.

Approx. length (m)	Depth (m)	Width (m)	Pipe diameter (mm)	No. of pipes at the bottom of the trench
100	1.4	0.45	150	1

Table 12: Filter drains for Portbury Hundred Construction Compound

- 6.8.4.9 The calculations to size the filter drains assumed a gradient of 1 in 200. The design will need to be checked to confirm that it is adequate when the proposed compound ground levels are available.
- 6.8.4.10 For pollution control purposes, filter drains provide water treatment and sediment removal as runoff percolates through the granular material. Additionally, filter drains can be lined with a geotextile for further water treatment and to avoid infiltration of runoff into the ground. It is recommended that at the beginning of the run of each filter drain, a chamber with a grated gully is installed to allow for maintenance.
- 6.8.4.11 In the case of fuel and oil handling occurring, a separate drainage system will be installed including oil separator to treat flows. All fuel and oil storage tanks

- would be installed within a bunded area with 110% storage volume of the tank available, should the tank be ruptured or a spill occur.
- 6.8.4.12 The results from the hydraulic modelling show that a filter drain with such dimensions is able to drain a contributing area of 0.27 ha. Considering this the number of filter drains necessary to drain each catchment are shown in Table 13:

Sub- catchment	No. of filter drains
А	13
В	13
С	10
D	8

Table 13: No. of filter drains needed in each sub-catchment.

6.8.4.13 In sub-catchments A and D, runoff conveyed by filter drains would be collected by two ditches flowing along the western and southern edges of the compound respectively. It is proposed that these ditches are grass-lined and that they include an impermeable lining. The proposed indicative dimensions for these ditches are the following:

Ditch	Approx. length (m)	Depth (m)	Base width (m)	Side Slope (1:x)	Top width (m)
Catchment A	386	1	1	3	7
Catchment D	230.5	1	1	3	7

Table 14: Dimensions of the proposed ditches for Portbury Hundred construction compound.

- 6.8.4.14 The calculations to size the ditches assumed a gradient of 1 in 500. The design will need to be checked to confirm that it is adequate when the proposed ground levels are available.
- 6.8.4.15 It is proposed to include check dams to be installed just upstream of each filter drains connection. This will provide attenuation of peak flows and pollution control, allowing for sediment settling. Also, it must be noted that the grass lining in the ditches provides water treatment as well.
- 6.8.4.16 In sub-catchments B and C, runoff conveyed by filter drains would need to be collected by two pipes flowing along the western and eastern edges of these catchments respectively. The proposed dimensions for these pipes are shown in Table 15:

Pipes	Approx. length of total run (m)	Longitudinal slope (1:x)	Pipe diameter (mm)
Catchment B	222	100	525

Pipes	Approx. length of total run (m)	Longitudinal slope (1:x)	Pipe diameter (mm)
Catchment D	144	100	525

Table 15: Dimension of the proposed pipes for Portbury Hundred construction compound.

- 6.8.4.17 The calculations to size these pipes assumed a gradient of 1 in 100. The design will need to be checked to confirm that it is adequate when the proposed ground levels for the compound area are available. Due to the large diameter of these pipes, they may have limited cover. If this is the case during detailed design, it is recommended to install protection to these pipes or prevent heavy loads being placed on them. Chambers will need to be included every 100m maximum for maintenance purposes.
- 6.8.4.18 Two attenuation basins would be constructed in this compound in this scenario: Basin 1 could be located in the south-western corner and Basin 2 could be located in the southern edge of the compound, close to the right boundary of sub-catchment C (see drawing 467470.BQ.04.20-DS-C14 in Appendix E for reference). Basin 1 is proposed to discharge into the existing ditch SG1, located to the west of the construction compound, while Basin 2 is proposed to discharge into existing ditch D4, which crosses the compound in its central part. Therefore, the portion of ditch D4 within Portbury Hundred Compound is proposed to be culverted. Discharge into the existing D4 culvert is subject to IDB consent (see Appendix A). The indicative dimensions for the basins are displayed in Table 16:

Basins	Depth (m)	Top area (m²)	Base area (m²)	Total volume available (m³)	Greenfield runoff (I/s) for 1 in 30 yr
Basin 1	1.5	2850	1968	3493	45.5
Basin 2	1.5	2000	1271	2433	31.6

Table 16: Dimensions of the proposed attenuation basins for Portbury Hundred compound.

6.8.4.19 Regarding pollution control, the detention basin would provide water treatment within a forebay that allows for sediment settling. The sedimentation forebay will be at least 10% of the total basin area as recommended in the SuDS Manual. In addition, it is recommended to install gabion baskets within the basins to provide additional sediment catching. If the compound is to be used to store ballast, it is recommended the installation of bypass separators at the outlets of both basins.

Variable impermeability scenarios

6.8.4.20 The dimensions of the proposed attenuation basins (Table 17) are indicative for the 1 in 30-year return period flood event and assuming that the site is 100% impermeable.

- 6.8.4.21 The maximum volume of the basins has also been calculated considering the 1 in 5 and the 1 in 10-year return period flooding for the two basins with 100% permeability.
- 6.8.4.22 Additionally, in order to test differing impermeability scenarios, the maximum volume of the basins has been calculated considering 75% and 50% impermeability for the two basins for the 1 in 30-year return period. Results are presented in Table 17 below.

Basins	Return Period (yr)	Permeability (%)	Maximum Volume (m³)
Basin 1	30	100	2,623
Basin 1	5	100	1,746
Basin 1	10	100	2,043
Basin 1	30	75	1,902
Basin 1	30	50	1,218
Basin 2	30	100	1,816
Basin 2	5	100	1,203
Basin 2	10	100	1,410
Basin 2	30	75	1,313
Basin 2	30	50	836

Table 17: Basin's volumes for different return periods and permeabilities

- 6.8.4.23 The construction of a bank surrounding the compound is proposed to control the exceedance flows.
- 6.8.4.24 The filter drains and the ditch for sub-catchment D are the only elements of the drainage system that flood during the 1 in 100 return period event (see Table 18:).

D undanana	Exceedance flood volume (m³)			
Drainage Elements	30 year return period; 10% allowance for climate change	100 year return period; 10% allowance for climate change		
Filter drain	0	7		
Ditch for catchment D	0	2.3		
Total flooded volume	0	308		

Table 18: Exceedance flood volume

6.8.4.25 It has to be noted that the exceedance flooded volume shown in Table 18: for filter drains corresponds to one filter drain. Considering all the filter drains to

- be installed in this compound would give a total exceedance flooded volume of 308 m³.
- 6.8.4.26 Exceedance routes are proposed to be located in the south-western corner of sub-catchment A towards the green area located to the west of Portbury 6.8.4.27 Hundred compound and in the southern edge of sub-catchment D towards a green area located between the compound and the A369 (see drawing 467470.BQ.04.20-DS-C14 in Appendix E for reference).
- 6.8.4.27 During detailed design, there might be opportunities to propose flooded volumes to be managed within the compound site, once the layout of the compound has been designed.

Further recommendations

- 68428 Historic boreholes logs undertaken in the vicinity of the compound available in the BGS viewer were used to investigate the groundwater flood risk. The highest level at which groundwater was encountered in the area was at 1.7 m bgl, which is the reason why all drainage is proposed to have a depth of 1.5 m or less. It must be noted that one of the boreholes available in the BGS viewer, undertaken to the south-east of the site, water was encountered at 2.13 m bgl after what it rose up to 0.91 m bgl. The SUDS Manual recommends investigating groundwater levels to ensure the base of the proposed drainage system is at least 1 m above the maximum anticipated groundwater level. Prior to construction it is therefore recommended that piezometers are installed to monitor groundwater levels over a 6 month period taking in April and May which are typically expected to be the peak for groundwater levels in the UK. If groundwater is encountered less than 1 m below the invert level of the proposed drainage system, the drainage design should take this into account and be amended accordingly.
- 6.8.4.29 Topographical survey is required in order to finalise the drainage system design, as described above, for the Portbury Hundred construction compound. If the existing ditches are found to be at a higher level than the proposed attenuation basins, the drainage proposals will need adjusting if feasible, or alternatively a pumping system may be required.
- 6.8.4.30 Further consultation with the EA will be undertaken during the detail design phase to check if compensatory flood storage will be required.

6.8.5 C13 Lodway Farm Compound

6.8.5.1 Lodway Farm compound is located adjacent to the M5, to the south of the railway line immediately North of Pill. It has a proposed footprint of 8.2 ha and the surface is assumed be constructed of Type 1 aggregate. Although this granular material is not totally impermeable, for the scope of this report it has been assumed that it is completely impermeable for the calculations. Within the compound there are archaeological and reptile areas and these

- areas have been excluded from the drainage system of the compound. The total contributing area of this compound after the exclusion of these areas is 6.36ha.
- 6.8.5.2 This construction compound will include a medium amount of parking spaces for staff vehicles, storage of materials, offices and welfare facilities. The materials stored will be sleepers, drainage, troughing, energy recovery units for vegetation removal, spoil, ballast and track formation. Plant vehicles will circulate in the area, including dumpers, excavators, dozers and lorries, and a short section of temporary track may be constructed to allow trains onto the area for ballast removal and delivery.
- 6.8.5.3 Surface water runoff from this compound up the 30 year return period plus an allowance for climate change of 10% (since this compound is temporary) will be captured by filter drains in this scenario, and then conveyed by a runoff collector along the northern edge of the compound to an attenuation basin. This would will then discharge into an existing culvert to the north, subject to confirmation by Network Rail, at the greenfield runoff rate. The existing ground falls towards the railway and therefore the proposed location of the drainage collector is inevitable. The drainage collector would need to be of a sort which allows vehicles to pass over it onto the track works.
- 6.8.5.4 The suggested dimensions of the filter drains can be found in Table 19 and the alignment and discharge points are presented in Drawing 467470.BQ.04.20-DS-C13 in Appendix E.

Approx. length (m)	Depth (m)	Width (m)	Pipe diameter (mm)	No. of pipes at the bottom of the trench
Varies	1.4	0.45	150	1

Table 19: Filter drains for Lodway Farm Construction Compound

- 6.8.5.5 The calculations to size the filter drains assumed a gradient of 1 in 200. The design will need to be checked to confirm that it is adequate when the proposed ground levels are available.
- 6.8.5.6 For pollution control purposes, filter drains provide water treatment and sediment removal as runoff percolates through the granular material. Additionally, filter drains will be lined with a geotextile for further water treatment and to avoid infiltration of runoff into the ground. It is recommended that at the beginning of the run of each filter drain, a chamber with a grated gully is installed to allow for maintenance.
- 6.8.5.7 In the case of fuel and oil handling occurring, a separate drainage system will be installed including oil separator to treat flows. All fuel and oil storage tanks will be installed within a bunded area with 110% storage volume of the tank available, should the tank be ruptured or a spill occur.

6.8.5.8 One attenuation basin would need be constructed in this compound drainage scenario, located in the north-western corner of the compound (see drawing 467470.BQ.04.20-DS-C13 in Appendix E for reference). The basin is proposed to discharge into the existing culvert at the northern part of the compound. The exact location of the existing culvert is to be confirmed by Network Rail. The proposed dimensions for the basin are displayed in Table 20:

Basins	Depth (m)	Top area (m²)	Base area (m²)	Total volume available (m³)	Greenfield runoff (I/s) for 1 in 30 yr
Basin	1.5	2,601	1,728	3,224	43.2

Table 20: Dimensions of the proposed attenuation basin for Lodway Farm compound.

6.8.5.9 Regarding pollution control, basins provide water treatment allowing for sediment settling. In addition, it is recommended to install gabion baskets within the basin to provide additional sediment catching. Since the compound will be used to store ballast, it is recommended the installation of bypass separators at the outlet of the basin. In addition, the basin should be constructed with a forebay at the inlet, and a micropool at the outlet to aid sediment control.

Further work

- 6.8.5.10 Historical borehole logs undertaken in the vicinity of the compound available in the BGS viewer were used to investigate the groundwater flood risk. The highest level at which groundwater was encountered in the area was at 1.7 m bgl, which is the reason why all drainage is proposed to have a depth of 1.5 m or less. The SUDS Manual recommends investigating groundwater levels to ensure the base of the proposed drainage system is at least 1 m above the maximum anticipated groundwater level. Prior to construction it is therefore recommended that piezometers are installed to monitor groundwater levels over a 6 months period taking in April and May which are typically expected to be the peak for groundwater levels in the UK. If groundwater is encountered less than 1 m below the invert level of the proposed drainage system, the drainage design should take this into account and be amended accordingly.
- 6.8.5.11 Topographical survey is required in order to finalise the drainage system design for the Lodway Farm compound.
- 6.8.5.12 Further consultation with the EA will be undertaken during the detail design phase to check if compensatory flood storage will be required.

6.8.6 C9 Ham Green Access point and compound

6.8.6.1 Ham Green Access point and compound is located to the north of the eastern portal of Pill Tunnel. Ham Green Lake is located just to the east of the access point compound. This compound has a proposed footprint of 0.491 ha, from

which 0.286 ha are the temporary compound and 0.204 ha will be the permanent construction. The permanent construction comprises a Network Rail pedestrian and vehicular access road, as well as some space for parking and landscaped areas. Low loaders to drop off RRVs will be using the entrance area to the access point. Network Rail is proposing a permeable solution for the temporary compound.

- 6.8.6.2 Surface water runoff from the permanent areas of the compound up to the 30 year return period plus an allowance for climate change of 40% will be captured by a linear ditch (0.172ha) that will be connected to a filter drain at the eastern edge of the turn area. Discharge from filter drains will be attenuated in a Geo-cellular storage or similar, with 34.2m³ required storage volume. It is recommended the discharge from the Geo-cellular storage to be connected to the existing Network Rail silt trap before outfall to Ham Green Lake. The system will discharge into the silt trap at greenfield runoff rates or 2.5l/s as the minimum practicable.
- 6.8.6.3 Network Rail has been informed of the discharge flow rate and volumes arriving to the silt trap (see Appendix A) from the access point. Since the capacity of the silt trap is unknown it has been agreed that the drainage will be treated prior to discharging to the silt trap. Therefore, a bypass oil separator is recommended before the connection with the existing outfall to provide water treatment. During detailed design, survey of the silt trap is required to identify its capacity.
- 6.8.6.4 The suggested dimensions of the ditch for the permanent areas is shown in Table 21: and the alignment and discharge points are presented in Drawing 467470.BQ.04.20-DS-C9 in Appendix E.

Approx. length (m)	Depth (m)	Top width (m)	Base width (m)	Side slope (1inX)
190	0.8	2.1	0.5	1

Table 21: Dimensions of the proposed ditch for the permanent areas Ham Green Compound

- 6.8.6.5 In terms of pollution control, several measures are proposed to prevent any sediment from reaching Ham Green Lake. Check dams will be installed along the proposed ditch to capture sediment. The accumulated silt will need to be removed periodically. The spacing of check dams will depend on their height and the longitudinal slope of the ditch which is still uncertain due to the absence of a detailed proposed ground model.
- 6.8.6.6 A silt pollution control (i.e. straw bale barrier) has been proposed to be placed during construction at the eastern edge of the site (as shown in 467470.BQ.04.20-DS-C9) to protect the Ham Green Lake from runoff and to provide temporary pollution control.

- 6.8.6.7 Exceedance routes from the Geo-cellular storage location towards the green areas are located to the east of the compound, between the compound fence and the Ham Green Lake (see drawing 467470.BQ.04.20-DS-C9 in Appendix E for reference).
- 6.8.6.8 Since the proposed drainage system is discharging into the lake, exceedance events could cause the Ham Green Lake to spill. Then, exceedance flows were checked for 100 yr return period. For the permanent areas, the pipeline running from the Geo-cellular storage towards the existing silt trap from Network Rail presents flooding for the 1 in 100 year return period:

Drainage Elements	30 year return period; 40% allowance for climate change	100 year return period; 40% allowance for climate change
Outlet Pipeline	0	1.9m³

Table 22: Exceedance flood volumes

Further recommendations

- 6.8.6.9 Historical boreholes logs undertaken in the vicinity of the compound available in the BGS viewer were used to investigate the ground water flood risk. The highest ground water level encountered in the area was at 22m BGL. If during construction ground water is found close to the surface, the drainage system will need to be revised to suit the ground water conditions.
- 6.8.6.10 Survey of the existing silt trap in the Railway Network drainage system outfall into the Ham Green Lake to be undertaken to check if it can accommodate the runoff from the compound.
- 6.8.6.11 Further consultation with the EA will be undertaken in the detail design phase to check if compensatory flood storage will be necessary.

6.8.7 C4 Clanage Road Compound

- 6.8.7.1 C4 Clanage Road compound is located to the west of Bristol, between the A369 and the railway line. This compound has a proposed footprint of 0.6137 ha, from which 0.312 ha are the permanent construction and 0.3017ha are the temporary compound. The surface material for the hardstanding of the temporary compound will be type 1 aggregate.
- 6.8.7.2 This site will be the main compound for construction activities through the Avon Gorge, including track works, earthworks, underbridge strengthening, signalling and telecoms. The site will be used as a medium-sized parking area, for materials storage, offices and welfare facilities. RRAP will be

- installed to allow RRVs access into the gorge, for which the construction of a ramp will be required to facilitate this.
- 6.8.7.3 The site is in flood zone 3 and is prone to waterlogging. It is understood that this will mean that the compound may be occasionally flooded and it is accepted that it not be possible to use for periods of time. In addition, it is proposed that materials and equipment will only be stored there for immediate maintenance activities.
- 6.8.7.4 No topographical data is available at present. Therefore, for the purpose of the drainage design of the temporary areas, it is proposed that the ground falls south-east, to allow for a low point in the south-eastern corner of the temporary extents.
- 6.8.7.5 Surface water runoff from the temporary areas of the compound up to the 30 year return period plus an allowance for climate change of 10% would be captured by a runoff collector and then discharge unattenuated via a pump supplied by Network Rail to the River Avon, subject to Environment Agency's consent (refer to Appendix A). The runoff collector is proposed to run along the southern edge of the temporary compound, ending in the south-eastern corner.
- 6.8.7.6 In terms of pollution control, a bypass separator is recommended before the discharge to the River Avon to provide water treatment.

7. Contributing areas & Runoff assessment

7.1 As any additional runoff up to the 30yr return period is to be managed in a sustainable way through the implementation of SuDS, there should be no increase to flood risk posed from surface water, including during exceedance events up to the 100yr return period. Pre- and post-development areas are presented in Table 23: to Table 26: below.

	Portishead Station					
	Pre - development Post - development					
Catchment Area	Permeable area (m²)	Impermeable area (m²)	Total (m²)	Permeable area (m²)	Impermeable area (m²)	Total (m²)
C.1	7,513	0	7,513	1,410	6,103	7,513
C.2	1,702	3,130	4,832	752	4,080	4,832
C.3	2,322	2,166	4,488	1,570	2,918	4,488
C.4	1,822	1,867	3,689	100	3,589	3,689

Table 23: Pre- and post-development areas in Portishead Station

			Pill Station			
	Pr	re - development		Po	st - development	
Catchment	Permeable area	Impermeable area	Total	Permeable area	Impermeable area	Total
Area	(m²)	(m²)	(m²)	(m²)	(m²)	(m²)
	8,455	0	8,455	2,352	6,103	8,455

Table 24: Pre- and post-development areas in Pill Station

Haul roads		
Pre - development	Post - development	

Area	Permeable area (m²)	Impermeable area (m²)	Total (m²)	Permeable area (m²)	Impermeable area (m²)	Total (m²)
1	3,286	0	3,286	0	3,286	3,286
2	2,963	0	2,963	0	2,963	2,963
3	1,759	0	1,759	0	1,759	1,759
4	2,966	0	2,966	0	2,966	2,966
5	1,020	0	1,020	0	1,020	1,020
6	2,970	0	2,970	0	2,970	2,970

Table 25: Pre- and post-development areas for Haul Roads

Table 26: Pre- and post-development areas for compounds

8. Modelling

8.1 The hydraulic modelling results show that runoff up to a 1 in 30-year return period (which has 3.33% chance of occurring in any given year) will be contained in the proposed drainage features without flooding. A list of the assets for the development site, with corresponding references to the drawings and calculations, are shown in Table 27. It should be noted that calculations and drawings are presented in Appendices B, C, D and E for each development area respectively.

Development Area	Drawing Reference	Calculation Reference – 1 in 30-year results
Portishead Station Cat A.1 (Appendix		467470.BQ.04.20-DS-
B)		PortisheadCat.A.1Calculations
Portishead Station Cat A.2	_	467470.BQ.04.20-DS-
Appendix B)	467470.BQ.04.20-DS-Portishead	PortisheadCat.A.2Calculations
Portishead Station Cat A.3	_	467470.BQ.04.20-DS-
Appendix B)		PortisheadCat.A.3Calculations
Portishead Station Cat A.4	-	467470.BQ.04.20-DS-
Appendix B)		PortisheadCat.A.4Calculations
Pill station carpark (Appendix C)	467470.BQ.04.20-DS-Pill	467470.BQ.04.20-DS-PillCalculations
laul roads (Appendix D)	467470.BQ.04.20-DS-Haulroads	467470.BQ.04.20-DS-HaulroadsCalculations
Compound east of Portishead Station		467470.BQ.04.20-DS-
work is in progress] (Appendix E)		EastPortisheadCalculations
C15 Sheepway compound (Appendix	467470.BQ.04.20-DS-C15	467470.BQ.04.20-DS-C15Calculations
C14 Portbury Hundred compound Appendix E)	467470.BQ.04.20-DS-C14	467470.BQ.04.20-DS-C14Calculations
urning area for construction vehicles	467470.BQ.04.20-DS-	467470.BQ.04.20-DS-
east to C14 (Appendix E)	C14turningarea	C14turningareaCalculations
C13 Lodway Farm (Appendix E)	467470.BQ.04.20-DS-C13	467470.BQ.04.20-DS-C13Calculations
C9 Ham Green compound (Appendix	467470.BQ.04.20-DS-C9	467470.BQ.04.20-DS-C9Calculations
C4 Clanage Road (Appendix E)	467470.BQ.04.20-DS-C4	-

Table 27: Calculations and associated drawing number for the proposed drainage options of the development areas

^{*}Both permanent and temporary impermeable areas have been considered.

9. Pollution Control & Water Quality

- 9.1 Due to the diverse nature of the developments covered in this drainage strategy, each site has been assessed independently.
- 9.2 SuDS have been promoted where possible as recommended on the National Planning Policy Framework and the North Somerset Sustainable Drainage Developer Guide as one of the most appropriate methods to provide the adequate water treatment before the discharge to the environment.
- 9.3 The Simple Index Approach, in line with Section 26.7.1 of the CIRIA C753 SuDS Manual 2015, has been undertaken for the developments classified as medium pollution hazard and mitigation measures have been consulted to the environmental regulator for the higher risk sites to ensure effective pollution control. The process and results are presented in appendix F.
- 9.4 Pollution hazards were identified and measures proposed in accordance to relevant legislation and best practices. Measures proposed for each site have been outlined in their correspondent sections of this report. This includes dry swales, bioretention areas, filter drains, ditches with check dams, detention basins and Class 1 bypass separator that has been sized to fully treat the more frequent flows.
- 9.5 Refer to Appendix F for details about pollution control and water quality.

10. General Recommendations and Missing Information

- Existing drainage system to be surveyed (CCTV, connectivity and levels)
- Topographical survey is recommended to be undertaken.
- Due to lack of gradient in the existing ditches, pumping might be required.
- Existing watercourses to which discharge is proposed should be surveyed to assess conditions and capacity.
- Outfalls should be monitored on a regular basis and only clear and uncontaminated water should be discharged from site. Outfalls will be equipped with shut-off valves to stop water flow in case any contamination event occurs.

APPENDICES

APPENDIX A

North Somerset Levels Internal Drainage Board (IDB) Drainage Advice and Pollution Mitigation Measures, Analysis of Portbury Ditch Water Levels

North Somerset Levels Internal Drainage Board Pre-application Response No. 2

Response to emails 20/3/2018

Email dated 13 April 2018 from Dario de Frutos Subtil

Compounds:

There are two main compounds to discharge to IDB watercourses: sheepway compound and the portubury 100 compound. The design of the compounds is still on progress and the only available information we have at the moment is that both construction compounds will be used for storage of materials (sleepers, troughing, spoil, ballast and track formation), welfare facilities and parking. Heavy vehicles will be using the compounds such as dumpers, excavators, dozers and lorries.

NSLIDB response:

The Board expects that all compounds and in particular any culverting to be removed post construction and as a minimum returned to their pre-development condition. If included in a remedial landscape scheme the watercourses should not be planted with anything other than a standard grass seed mix to prevent erosion. Any other vegetation should be left to colonise naturally.

Note that the Board requires that any open watercourses within the compounds should be fully culverted for the duration of the works, min 750mm dia (subject to final approval on receipt of detailed proposals) and all to be removed on completion to prevent construction runoff from entering the watercourse.

Measures to minimise and control the risk of contaminated runoff from the compounds should be implemented as part of site set-up. The main risks in term of water pollution hazard and how they will be mitigated below:

Sediments:

Filter drains will be proposed as the conveyance system for most part of the compounds. The flows from the filter drains will be then directed to ditches located around the perimeter of the compounds that will also allow sedimentation. Additionally, catchpits with sumps will be also promoted to capture the silt.

NSLIDB Comment:

That seems a reasonable approach, the outfall should be monitored on a regular basis and only clear and uncontaminated water should be discharged from site. This should be the driving factor for the design of the onsite features and additional measure introduced if required throughout the construction period.

Detention basins will be proposed as the most downstream before the discharge (at the greenfield runoff peak) to the watercourses to provide water storage but also a secondary water treatment (sedimentation and pollution removal).

Storage materials areas should be under cover to prevent wash down.

NSLIDB Comment:

Agree that basins at final outfall points are essential. All basins and discharge points should have means of shutting off outlets in case of spillage etc. Discharge rate liable to be academic – outfalls will almost certainly be submerged owing to lack of gradients in local ditch network and getting the water away will be the challenge. It may be found necessary to pump in order to maintain satisfactory ground conditions within the compounds. We comment elsewhere on the suitability of the offsite ditches to convey the compound drainage.

Fuel and oil:

For the areas of fuel and oil handling, oil separators will be provided to remove hydrocarbons from high-risk areas of runoff. In addition, penstock chambers will be proposed downstream of the oil separators and at other locations of the network to enable shut down of the surface water drainage network in case of a spill occurs. *NSLIDB Agreed*

Water from wash down areas:

Wash down areas should be isolated and appropriate water treatment to be provided as required. NSLIDB Agreed

Haul roads

The main pollution hazard for the haul roads is likely to be silt.

The runoff generated is currently proposed to be conveyed in ditches with checkdams to capture the sediment. The accumulated sediment will need to be digged and disposed periodically. As runoff peaks are going to be attenuated at greenfield peak, the removal of contaminants through settling, adsorption will be enhanced.

NSIDB response:

As mentioned above any discharge from the site should be clear and uncontaminated. A survey of silt levels in receiving watercourses should be undertaken prior to works commencing onsite. Any silt that does end up in adjacent watercourses should be disposed of post construction by the main contractor.

Email from Dave Bellamy dated 10 April 2018

I made a note during the meeting in February that the discharge into the Portbury Ditch Main river from the Portishead car park could be unattenuated. Is that still correct?

NSLIDB response:

Only discharge from the actual platform and station building can be discharged unattenuated, all other areas including parking, should be discharged at greenfield rates and volumes.

Email from Gloria Rigual Muñoz dated 12 April 2018

I'm writing to you regarding the ditch D4 that crosses the proposed location for Portbury Hundred Construction Compound. I wanted to ask you if this ditch could be culverted to allow for the construction of the compound above it.

Also, referring to Dave's email early this week, if you could come back to us as soon as possible with your preferred discharge points and the greenfield runoff rates, that would be really helpful for us. For now, we're assuming a minimum discharge rate of 5 l/s since controlling flow at lower discharge can be technically unfeasible.

NSLIDB response:

As discussed above the Board would require any open watercourses within compounds should be culverted to prevent contamination by construction run-off. Therefore we wouldn't have any issues with the culverting of ditch D4.

The Board believes that with modern vortex flow controls flows can be restricted to 2.5 l/s without an unnecessary risk of blockages.

Email from Dave Bellamy dated 5 April 2018

We are currently looking at the Drainage Strategy for the reinstatement of the railway between Bristol and Portishead. At the meeting I attended on 8th April it was stated that haul road and construction compound drainage could discharge to the local rhyne network at greenfield run-off rate. For a lot of these areas, we are calculating very low rates (0.6-0.9I/s) and I am wondering if there is a practical minimum rate that we can use in our design to reduce storage requirements?

Also, could you please let me know typical maximum and minimum water levels for the area between the M5 and Portishead?

NSLIDB response:

As discussed above flow control structures should be set to a minimum of 2.5 l/s.

With regard to discharge points our marked up plans associated with our official consultation response may help. They will be sent under separate cover.

All of the watercourses, outside of those maintained by the IDB, in the area are in need of maintenance to bring them into a suitable condition to discharge into. This should include works to ensure a drainage route to an IDB maintained watercourse or main river. Localised pumping maybe required to ensure a suitable contractors compound if land raising is not undertaken.

The Board do not have any records of water levels in the area.

The requirement for any compensatory flood storage will be an EA requirement and consultation should be had with them in this regard.

NSLIDB Draft Meeting Notes 8th February 2018

Comments:

It is important to refer to the marked up drawings which we supplied and which were displayed at the meeting. They clarify many of the points made in the minutes.

Note 1. Should read - The IDB currently have about a 4m width for clearing the cut which is barely adequate and involves the machine slightly overhanging the railway fence

Note 5 – Sheepway Low Loader Access

Back in 2007 the Board had a great deal of difficulty sorting out the low loader / machine access arrangement off Sheepway and in the end a practical trial was carried out with our low loader before the alignments for the fencing and gates etc were finalised. The final arrangement has turned out to be satisfactory but the Board never did receive as built drawings. The only drawings the Board have on file are for a number of (unsatisfactory) previous draft proposals. Please send us a copy of the basic survey on which your current proposal drawing is based and we will mark this up as requested.

Note 6 – Culvert Headwalls

Attached is a suggested sketch arrangement SK 1 which might allow open watercourse clearance without a need to work inside the railway fence, whilst still permitting access to the headwalls without leaving railway property. Comments invited.

Note 9 – Temporary Culvert Sizes

All temporary culverts to be a minimum of 750mm (subject to final approval on receipt of detailed proposals)

Note 12 - Port of Bristol owns land and ditch north of railway and need to be involved in this point.

Also attached is out high level tracking plan. When detailed fencing and compound drawings have been produced we will be able to mark up our tracking requirements.

Phillips, Becky/BRS

From: Vasilyev, Kostya/UKS

Sent: 18 January 2017 13:36

To: Lillie, Penny/UKS

Cc: Cooper, Robert/UKS; Bird, Robert/UKS

Subject: RE: Portishead -tide locked level

Attachments: Scanned from a Xerox Multifunction Printer.pdf

Penny

Thank you for your enquiry.

Following the location of points on the scan sent to me and Robert Bird on 16/01/2017 13:13 by Robert Cooper, I can say that the water levels for the 25 year and 50 year events (climate change scenario) are as follows:

The **left point** as per the scan referenced above (please also find it attached) (near the drain, the location is to the south of Harbour Road):

50 year event: 7.05m 25 year event: 4.85m

The levels are the same for both pre-development and post development situation for each of the return periods listed above.

It looks like the water stays within the ditch or is not overtopping the planned ground levels (in post development situation).

There is no water level information in the model for the right point (to the north of Phoenix Road).

In order to provide some estimate for this point we looked at the downstream end of this drain (at its confluence with the Portbury? Drain, the location is to the east of Newfoundland Way, see the red star on the map below). These levels will provide a very conservative approximation of levels at the right point on the scan provided. Taking this information from the downstream end of this drain allows us to estimate levels further upstream of this drain as this drain is not represented in a model.

The downstream side of the brook that flows by the right point:

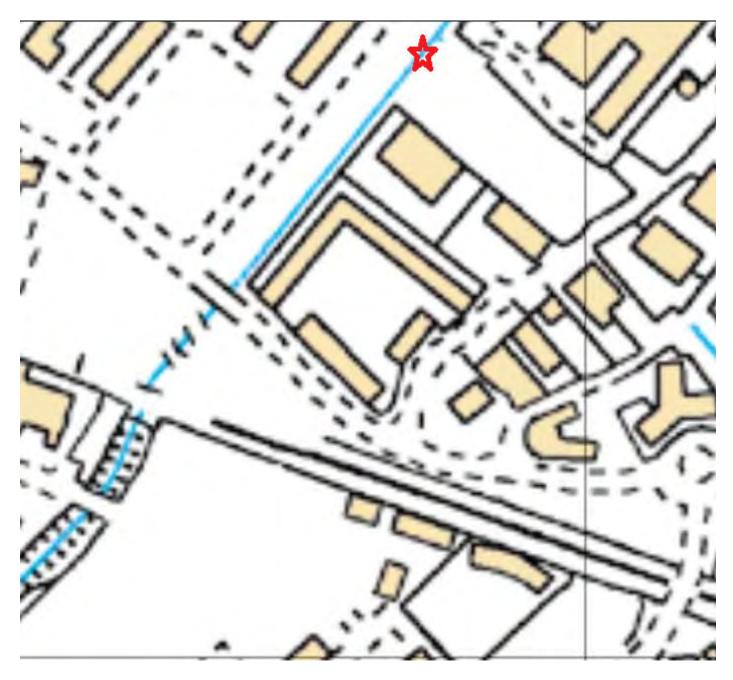
50 year event:

7.06m (post development situation)

7.05m (pre-development situation)

25 year event:

5.24m (both pre and post development situation)


It looks like the water stays within the ditch or is not overtopping the planned ground levels (in post development situation).

Hope it helps.

Please let us know if there are more questions.

Many thanks.

Kind regards

Kostya

Konstantin Vasilyev BSc MSc C.WEM CSci CEnv MCIWEM Water Engineer
Customer Support Manager – Flood Modeller Suite
T +44 (0) 1793 81 2479
D +44 (0) 1793 81 6438

CH2M Burderop Park Swindon Wiltshire SN4 0QD UK

www.ch2m.com | LinkedIn | Twitter | Facebook

Flood Modeller Suite – trusted by 25,000 users worldwide

www.floodmodeller.com | LinkedIn | Twitter | Facebook

From: Lillie, Penny/UKS Sent: 17 January 2017 10:48

To: Bird, Robert/UKS < Robert.Bird@ch2m.com>

Cc: Vasilyev, Kostya/UKS <Kostya.Vasilyev@ch2m.com>; Cooper, Robert/UKS <Robert.Cooper@ch2m.com>

Subject: RE: Portishead -tide locked level

Hi Robert B

Do you know when we will get information for our work. I need to update Client.

thanks

Penny Lillie

Project Engineer

Direct +44 (0)1793 816671 Mobile +44 (0)7547 190959

CH2M

Burderop Park, Swindon, UK SN4 0QD www.ch2m.com

From: Cooper, Robert/UKS Sent: 17 January 2017 09:00

To: Bird, Robert/UKS < Robert.Bird@ch2m.com>; Lillie, Penny/UKS < Penny/UKS < Penny/UKS

Cc: Vasilyev, Kostya/UKS < Kostya. Vasilyev@ch2m.com>

Subject: RE: Portishead -tide locked level

Robert,

The hydrographs would also be useful to input into Micro Drainage.

Regards

Robert Cooper Senior Engineer D +44 01793816260

CH2M

Burderop Park Swindon Wilts SN4 0QD

www.ch2m.com | LinkedIn | Twitter | Facebook

From: Cooper, Robert/UKS Sent: 16 January 2017 13:13

To: Bird, Robert/UKS <Robert.Bird@ch2m.com>; Lillie, Penny/UKS <Penny.Lillie@ch2m.com>

Cc: Vasilyev, Kostya/UKS < Kostya. Vasilyev@ch2m.com>

Subject: RE: Portishead -tide locked level

Robert,

Please refer to attached mark-up showing outfall location.

I trust this is clear.

Regards

Robert Cooper Senior Engineer D +44 01793816260

CH2M

Burderop Park
Swindon
Wilts SN4 0QD
www.ch2m.com | LinkedIn | Twitter | Facebook

From: Bird, Robert/UKS Sent: 13 January 2017 17:59

To: Lillie, Penny/UKS <Penny.Lillie@ch2m.com>

Cc: Cooper, Robert/UKS <Robert.Cooper@ch2m.com>; Vasilyev, Kostya/UKS <Kostya.Vasilyev@ch2m.com>

Subject: RE: Portishead -tide locked level

Penny

Please can you send a sketch showing outfall location(s) - or describe with words if easier..... I will then consult Kostya to review coastal model results.

We have coastal flood model results for the 25 year and 50 year events but not the 30 year event – so we may have to work with the 50-year event?

regards

Robert

From: Lillie, Penny/UKS Sent: 12 January 2017 10:45

To: Bird, Robert/UKS < <u>Robert.Bird@ch2m.com</u>> **Cc:** Cooper, Robert/UKS < <u>Robert.Cooper@ch2m.com</u>>

Subject: Portishead -tide locked level

Happy New Year Robert

Following our meeting in Dec, we have now received guidance from the local council (NSC) for drainage design.

They have said we need to demonstrate the drainage system maintains a 1 in 30 year capacity with climate change capacity under tide locked conditions.

Just wondering if you could provide guidance on the tide locked level? From my notes at our Dec meeting a level of 7.9m for 200 return was mentioned?

regards

Penny Lillie

Project Engineer

Direct +44 (0)1793 816671 Mobile +44 (0)7547 190959

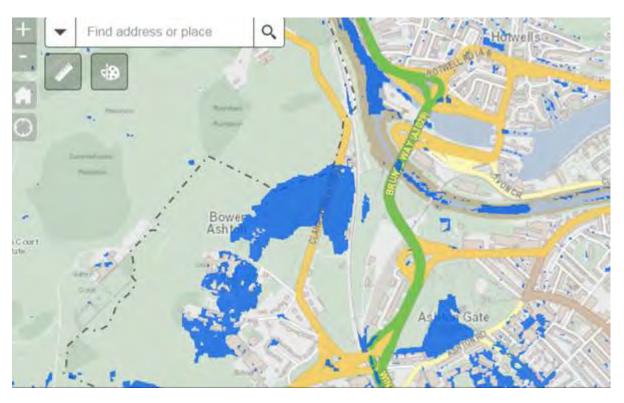
Linfoot, Andrew/BRS

From: Patrick Goodey <patrick.goodey@bristol.gov.uk>

Sent: 27 June 2018 16:37

To: Abigail Hall; 'Agriodima, Margarita/EXT'

Subject: [EXTERNAL] RE: Metrowest inquiry - runoff rate from a temporary compound to the


Avon

Hi both,

If this site is draining directly into the River Avon then an unrestricted discharge is fine - this is likely to need approval from the EA via the environmental permit. You also need to make a reasonable consideration of tide locking.

The proposal to pump is not preferred – are you able to drain the site via gravity?

Also note that some areas around Clanage Road is a known are of high risk from surface water flooding so your drainage strategy/FRA must address this. The below screenshot of http://maps.bristol.gov.uk/bfrm/ shows the risk area. We have many recent records of flooding here that verify the mapped risk.

I hope that helps, let me know if you have any more questions

Thanks Patrick

Patrick Goodey Flood Risk Manager Tel: 0117 922 3206 Mob: 07557 203 443

Bristol City Council has developed its Local Flood Risk Management Strategy. The final report can be viewed via www.bristol.gov.uk/floodstrategy

From: Abigail Hall

Sent: 27 June 2018 15:26 **To:** 'Agriodima, Margarita/EXT'

Cc: Patrick Goodey

Subject: RE: Metrowest inquiry - runoff rate from a temporary compound to the Avon

Hi Patrick,

I'm not sure what to respond to this one, they have been asking for a response today. I think they are preparing an FRA for the works.

My initial thoughts were to let it go unrestricted into the Avon, but our discharge zones map indicates that it will be in the Ashton Gate area and discharge rates should be limited.

Thanks, Abi

From: Agriodima, Margarita/EXT [mailto:Margarita.Agriodima@jacobs.com]

Sent: 25 June 2018 11:55

To: Abigail Hall

Cc: Bellamy, Dave/EXT; Reshef, Imri/EXT

Subject: Metrowest inquiry - runoff rate from a temporary compound to the Avon

Hello,

We are preparing the drainage strategy for the temporary construction compounds for Metrowest project. Could you please confirm us if the discharge rate to the Avon should be restricted to the greenfield runoff rate for the temporary site? The design life of the temporary site is 1-2 years.

This concerns a temporary compound (Clanage Road) where there is no presence of any existing drainage system and we are proposing to temporarily pump the runoff from the compound.

Kind Regards,

Margarita Agriodima, MEng GMICE Jacobs

Graduate Water Engineer | Environment Maritime Resilience

- + 44(0)1392340965
- + 44(0)7534676287 mobile

margarita.agriodima@jacobs.com

Ash House, Falcon Road Sowton, Exeter EX27LB United Kingdom www.jacobs.com

NOTICE - This communication may contain confidential and privileged information that is for the sole use of the intended recipient. Any viewing, copying or distribution of, or reliance on this message by unintended recipients is strictly prohibited. If you have received this message in error, please notify us immediately by replying to the message and deleting it from your computer.

Linfoot, Andrew/BRS

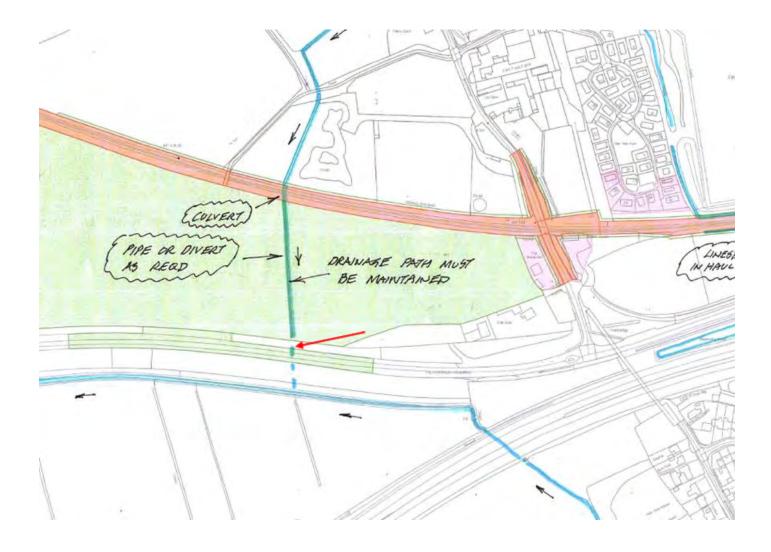
From: Reshef, Imri/EXT
Sent: 25 June 2018 12:37

To: developmentcontrol@nslidb.org.uk; alsopengineer@gmail.com

Cc: Fabisiak, Magda/BRS; Agriodima, Margarita/EXT; Bellamy, Dave/EXT; Linfoot,

Andrew/BRS

Subject: FW: [EXTERNAL] Re: MetroWest - query about ditch D4


Attachments: NSLIDB Metrowest pre-application response 2.pdf; NSLIDB response to Metrowest

Stage 2 Consultation.pdf; SK 1 culvert headwall sketch.pdf; NSLIDB Metro West

mark up Dec 2017.zip; Keeching Route for The Cut & The Moat.pdf

Simon/Dan,

Following the correspondence from April, can you please confirm that it is possible to discharge the runoff water from Portbury Hundred compound to the existing D4 culvert crossing A369 (discharge rate will be in greenfield runoff rates as detailed in the Drainage Strategy Report). Please see the plan below with red arrow showing the proposed connection.

Kind regards,

Imri Reshef | Jacobs | Assistant Water Engineer | Environment Maritime Resilience | +44.1392.340.974 DD | +44.1392.444.252 office |

Imri.Reshef@jacobs.com | www.jacobs.com

From: Simon Bunn [mailto:developmentcontrol@nslidb.org.uk]

Sent: 20 April 2018 16:29

To: Rigual Munoz, Gloria/EXT <Gloria.RigualMunoz@jacobs.com>; Bellamy, Dave/EXT <Dave.Bellamy@jacobs.com>;

De Frutos Subtil, Dario/EXT < <u>Dario.deFrutosSubtil@ch2m.com</u>>

Cc: Giles Oliver < theengineer@nslidb.org.uk; Linfoot, Andrew/BRS < Andrew.Linfoot@jacobs.com; Fabisiak, Magda/BRS < Magda/BRS < mailto:Magda.Fabisiak@jacobs.com; Dan Alsop Chartered Engineer < alsopengineer@gmail.com; Jennifer

Devereux <Jennifer.Devereux@n-somerset.gov.uk>

Subject: RE: [EXTERNAL] Re: MetroWest - query about ditch D4

Gloria/Dave/Dario,

Please find attached our response (no 2) to various queries that I have pulled together into one document.

If you have any further questions, please do not hesitate to ask.

Kind regards,

Simon

Simon Bunn Development Control Officer

North Somerset Levels IDB

The Cider House
The Grange Business Park
Hewish
Weston-super-Mare
N. Somerset
BS24 6RR

Tel: 01934 833388

Email: developmentcontrol@nslidb.org.uk

The information in this internet Mail is confidential and is intended solely for the addressee. Access, copying or re-use of information in it by anyone else is unauthorised. Any views or opinions presented are solely those of the author and do not necessarily reflect those of North Somerset Levels Internal Drainage Board. North Somerset Levels Internal Drainage Board will not be liable for direct, special, indirect or consequential damages arising from alteration of the contents of this message by a third party or as a result of any indirect or consequential damages arising from alteration of the contents of this message by a third party or as a result of any virus being passed on. If you are not the intended recipient please delete this message immediately and contact North Somerset Levels Internal Drainage Board.

From: Rigual Munoz, Gloria/EXT [mailto:Gloria.RigualMunoz@jacobs.com]

Sent: 18 April 2018 11:57

To: Dan Alsop Chartered Engineer <a leading to the company of the

 $\textbf{Cc:} Simon Bunn < \underline{developmentcontrol@nslidb.org.uk} >; Giles Oliver < \underline{theengineer@nslidb.org.uk} >; Bellamy, \\ Dave/EXT < \underline{Dave.Bellamy@jacobs.com} >; Linfoot, Andrew/BRS < \underline{Andrew.Linfoot@jacobs.com} >; Fabisiak, Magda/BRS < \underline{Andrew.Linfoot@jacobs.com} >; Fabisiak, Magda/BRS < \underline{Andrew.Linfoot@jacobs.com} >; Control of the property of$

<Magda.Fabisiak@jacobs.com>

Subject: RE: [EXTERNAL] Re: MetroWest - query about ditch D4

Hi Dan,

Your queries have been passed to the Bristol team, in charge of gathering that information.

Thank you.

Kind regards, Gloria

From: Dan Alsop Chartered Engineer [mailto:alsopengineer@gmail.com]

Sent: 17 April 2018 16:57

To: Rigual Munoz, Gloria/EXT < Gloria.RigualMunoz@ch2m.com >

Cc: Simon BUNN <developmentcontrol@nslidb.org.uk>; Giles OLIVER <theengineer@nslidb.org.uk>

Subject: [EXTERNAL] Re: MetroWest - query about ditch D4

Dear Gloria,

We are trying to sort out responses to the multiple queries your team has recently sent us. As they are mostly interdependent I will be routing all my answers via Simon Bunn.

One trouble is that we are still waiting for the info we were promised at the meeting held on 8th Feb, viz, details of the proposed fencing, especially around Portishead Station adjacent to the IDB watercourse, a basic survey of the existing Sheepway access point as we cannot tell from the drawings supplied whether what is proposed will be adequate, and a list of key contacts with who does what. If you could chivvy those along we will be able to get back to you sooner.

Sorry I can't be more helpful at the moment.

Regards, Dan Alsop

From: Rigual Munoz, Gloria/EXT

Sent: Thursday, April 12, 2018 4:18 PM

To: alsopengineer@gmail.com

Cc: Bellamy, Dave/EXT; De Frutos Subtil, Dario/EXT; Agriodima, Margarita/EXT; Reshef, Imri/EXT;

theengineer@nslidb.org.uk; developmentcontrol@nslidb.org.uk

Subject: MetroWest - query about ditch D4

Hi Dan,

I'm writing to you regarding the ditch D4 that crosses the proposed location for Portbury Hundred Construction Compound. I wanted to ask you if this ditch could be culverted to allow for the construction of the compound above it.

Also, referring to Dave's email early this week, if you could come back to us as soon as possible with your preferred discharge points and the greenfield runoff rates, that would be really helpful for us. For now, we're assuming a minimum discharge rate of 5 l/s since controlling flow at lower discharge can be technically unfeasible.

Thank you.

Kind regards,

Gloria Rigual Muñoz | Jacobs | Graduate Water Engineer | Environment Maritime Resilience | +44.1392.340.971 DD | +44.1392.444.252 office |

gloria.rigualmunoz@jacobs.com | www.jacobs.com

NOTICE - This communication may contain confidential and privileged information that is for the sole use of the intended recipient. Any viewing, copying or distribution of, or reliance on this message by unintended recipients is strictly prohibited. If you have received this message in error, please notify us immediately by replying to the message and deleting it from your computer.

From: Agriodima, Margarita/EXT

To: "Jake,Faucitt@networkrail.co.uk"

Cc: Bellamy, Dave/EXT; Linfoot, Andrew/BRS

Subject: RE: Metrowest - Discharge volume from Ham Green Compound

Date: 29 June 2018 10:19:00

Attachments: Hydrograph for Ham Green Compound.pdf

Hi Jake,

I am contacting you regarding the drainage strategy of Metrowest since I would like to inform you about the discharge volume to the silt trap from the Network Railway drainage system for the C9-Ham Green Compound.

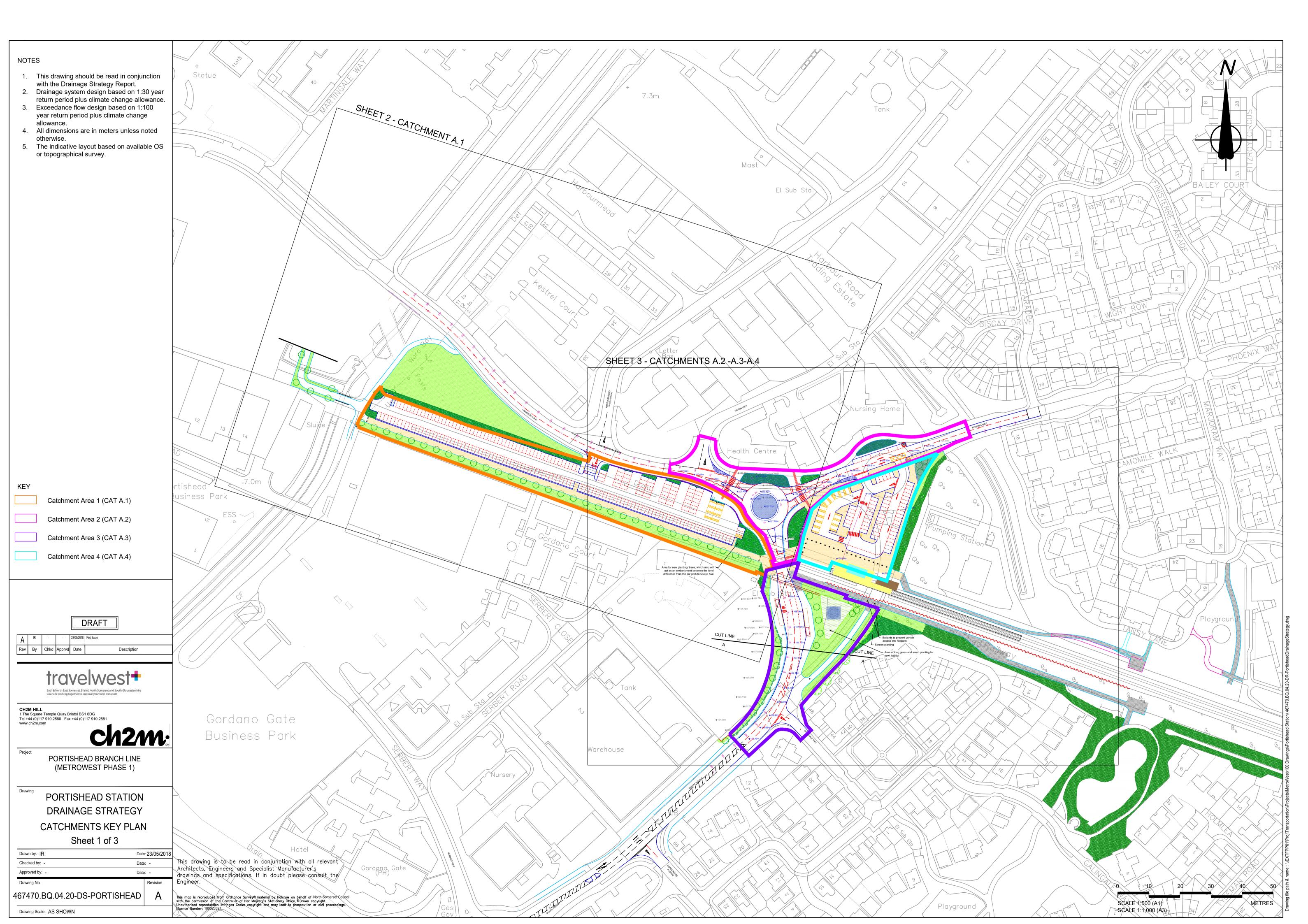
The total volume will discharge after approximately 19 hours at 2.5l/s discharge rate to the silt trap. Please see the attached hydrograph.

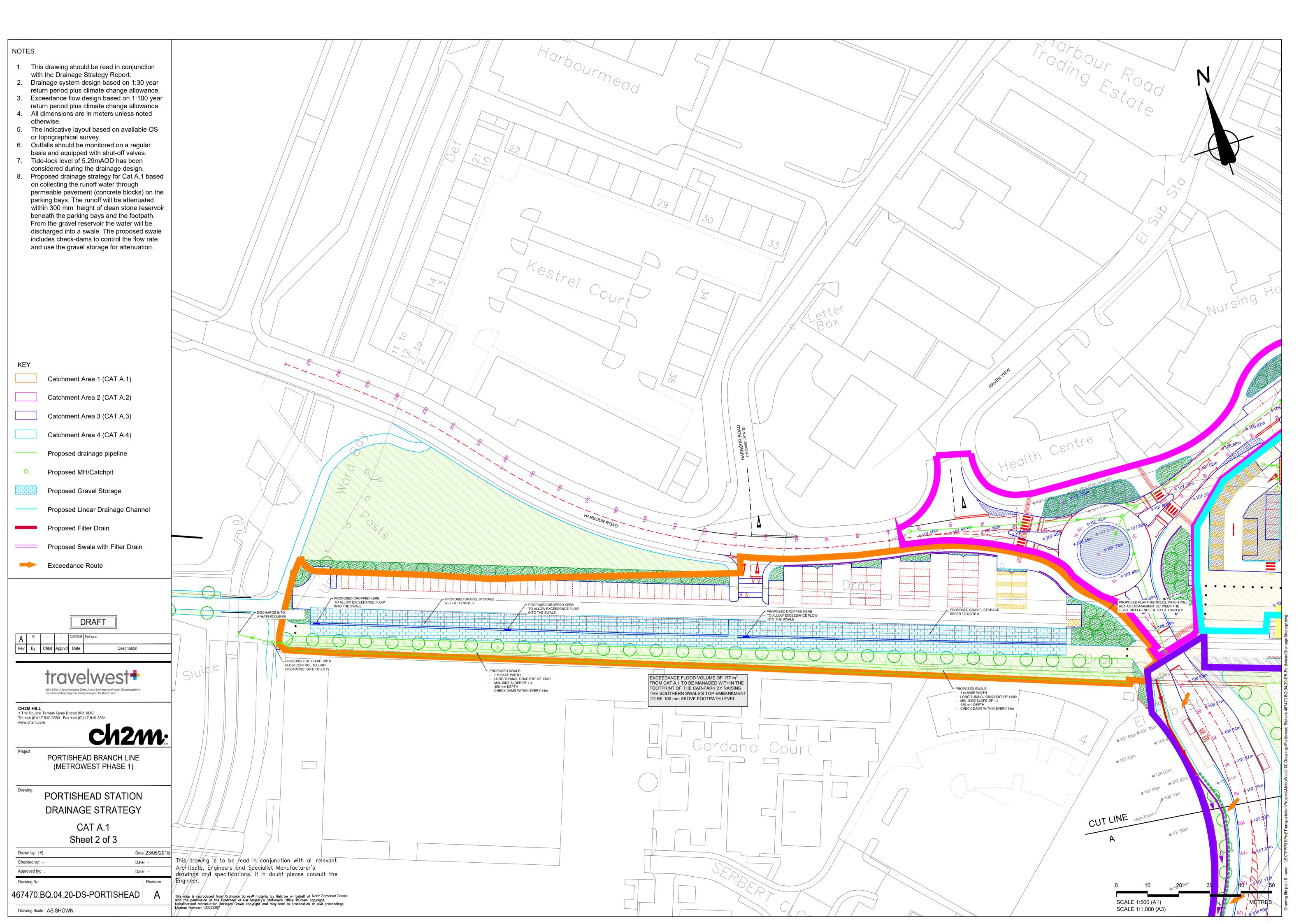
Please let me know if you require any more information.

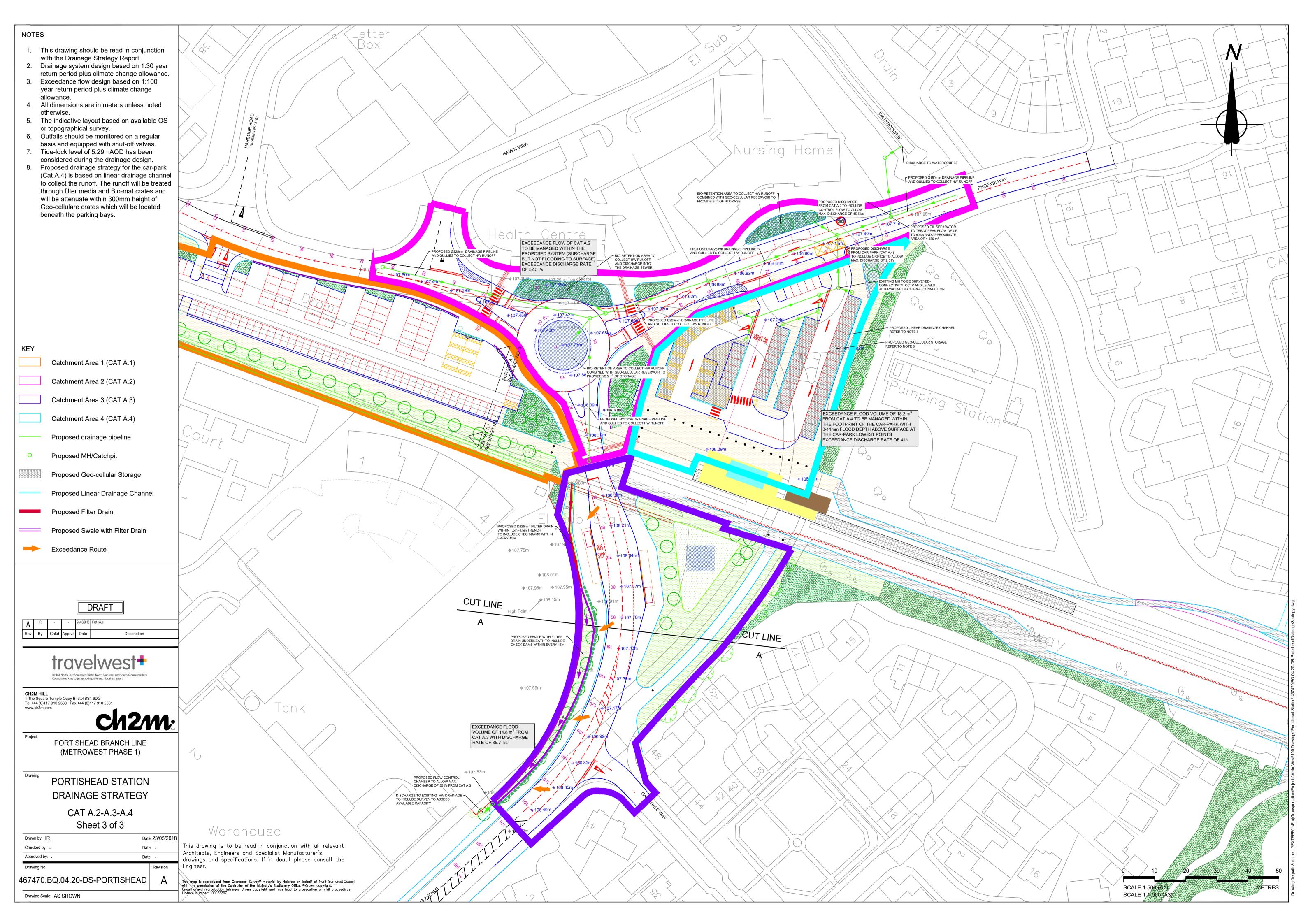
Kind Regards,

Margarita Agriodima, MEng GMICE Jacobs

Graduate Water Engineer | Environment Maritime Resilience


- + 44(0)1392340965
- + 44(0)7534676287 mobile


margarita.agriodima@jacobs.com


Ash House, Falcon Road Sowton, Exeter EX27LB United Kingdom www.jacobs.com

APPENDIX B

Portishead Station Drainage Strategy Drawings and Calculations

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Missa
Date 29/05/2018 18:58	Designed by DD048136	Desipage
File Portishead Catchment 1.MDX	Checked by	niamade
XP Solutions	Network 2017.1.2	•

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FSR Rainfall Model - England and Wales

Return Period (years) 30 PIMP (%) 100

M5-60 (mm) 20.000 Add Flow / Climate Change (%) 0

Ratio R 0.350 Minimum Backdrop Height (m) 0.200

Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500

Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200

Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 0.75

Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500

Designed with Level Inverts

Network Design Table for Storm

« - Indicates pipe capacity < flow</pre>

PN	Length (m)	Fall (m)	Slope I (1:X)			Base low (1/s)	k (mm)	n	HYD SECT	DIA (mm)	Section		Auto Design
	2.000 54.000			0.156 0.000	5.00						Pipe/Co 1:4		6
s2.000	2.000	0.004	500.0	0.176	5.00	0.0	0.600		0	100	Pipe/Co	nduit	•
s1.002	54.000	0.108	500.0	0.000	0.00	0.0		0.040	4 \=/	1000	1:4	Swale	0
s3.000	2.000	0.004	500.0	0.157	5.00	0.0	0.600		0	100	Pipe/Co	nduit	0
	Network Results Table												
	PN	Rain		/ T.T		a Σ Bas					_		
		(mm/hr		•		Flow (1			ld Flow (1/s)	_	Cap (1/s)	Flow (1/s)	
	S1.000) (mins)	(m)	(ha)	Flow (1	/s) (1			(m/s)		(1/s)	
	S1.000 S1.001	(mm/hr	(mins)	(m) 6.604	(ha) 0.15	Flow (1 ,	/s) (1	./s)	(1/s)	(m/s)	(1/s) 2.7«	(1/s)	
		50.00 50.00	(mins)	(m) 6.604 6.600	(ha) 0.15 0.15	Flow (1 , 6	/s) (1 0.0 0.0	0.0	(1/s) 0.0	(m/s) 0.34 0.25	(1/s) 2.7«	(1/s) 21.1 21.1	
	S1.001	50.00 50.00	(mins) 5.10 8.66 5.10	(m) 6.604 6.600	(ha) 0.15 0.15 0.17	Flow (1 , 6 6 6	/s) (1 0.0 0.0	0.0 0.0	0.0 0.0 0.0	(m/s) 0.34 0.25	(1/s) 1 2.7« 6 60.6	(1/s) 21.1 21.1 23.8	
	\$1.001 \$2.000	50.00 50.00	(mins) 5.10 8.66 5.10 12.23	(m) 6.604 6.600 6.496	(ha) 0.15 0.15 0.17	Flow (1 , 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	/s) (1 0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	(m/s) 0.34 0.25 0.34	(1/s) 1 2.7« 60.6 1 2.7«	(1/s) 21.1 21.1 23.8 45.0	

CH2M		Page 2
Ash House		
Falcon Road		4.
Exeter EX2 7LB		Micco
Date 29/05/2018 18:58	Designed by DD048136	Desinage
File Portishead Catchment 1.MDX	Checked by	Drainage
XP Solutions	Network 2017.1.2	

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	n	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.003	54.000	0.108	500.0	0.000	0.00	0.0		0.040	4 \=/	1000	1:4 Swale	•
S4.000	2.000	0.004	500.0	0.110	5.00	0.0	0.600		0	100	Pipe/Conduit	8
S1.004	54.000	0.108	500.0	0.000	0.00	0.0		0.040	4 \=/	1000	1:4 Swale	8
s5.000	2.000	0.004	500.0	0.106	5.00	0.0	0.600		0	100	Pipe/Conduit	8
S1.005 S1.006	54.000	0.108 0.025		0.000	0.00	0.0	0.600	0.040	4 \=/		1:4 Swale Pipe/Conduit	a

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)		Σ Base Flow (1/s)				Cap (1/s)	Flow (1/s)
S1.003	50.00	15.79	6.384	0.489	0.0	0.0	0.0	0.25	60.6«	66.2
S4.000	50.00	5.10	6.280	0.110	0.0	0.0	0.0	0.34	2.7«	14.9
S1.004	50.00	19.36	6.276	0.599	0.0	0.0	0.0	0.25	60.6«	81.1
s5.000	50.00	5.10	6.172	0.106	0.0	0.0	0.0	0.34	2.7«	14.4
S1.005 S1.006	50.00	22.92		0.705 0.705	0.0	0.0	0.0		60.6« 36.6«	

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 29/05/2018 18:58	Designed by DD048136	Desinago
File Portishead Catchment 1.MDX	Checked by	niamage
XP Solutions	Network 2017.1.2	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 5 Number of Online Controls 6 Number of Storage Structures 5 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.350 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s)

Duration(s) (mins)

15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080

Return Period(s) (years)

Climate Change (%)

Summer and Winter 960, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080

30, 100

PN	US/MH Name	Storm		Climate Change	First Surch		First Flo		First (Z) Overflow	Overflow Act.
~1 000		0.60!	2.0	. 100	00/45	_	100/60			
S1.000	SPP1	360 Winter	30	+40%	30/15	Summer	100/60	Winter		
S1.001	SSW1	240 Summer	30	+40%	30/240	Summer	30/120	Summer		
S2.000	SPP2	480 Winter	30	+40%	30/15	Summer	100/60	Winter		
S1.002	SSW2	480 Winter	30	+40%	100/180	Winter	100/180	Winter		
s3.000	SPP3	960 Winter	30	+40%	30/15	Summer	100/120	Winter		
S1.003	SSW3	960 Winter	30	+40%	100/240	Winter	100/240	Winter		
S4.000	SPP4	1440 Winter	30	+40%	30/15	Summer	100/720	Winter		
S1.004	SSW4	1440 Winter	30	+40%	100/720	Winter	100/720	Winter		
S5.000	SPP5	2160 Winter	30	+40%	30/15	Summer	100/960	Winter		
S1.005	SSW5	2160 Winter	30	+40%	100/960	Winter	100/960	Winter		
S1.006	SOutlet	2160 Winter	30	+40%	30/120	Summer	100/720	Winter		

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 29/05/2018 18:58	Designed by DD048136	Desipage
File Portishead Catchment 1.MDX	Checked by	Drainage
XP Solutions	Network 2017.1.2	'

$\frac{\text{30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Storm}}$

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S1.000	SPP1	6.970	0.266	0.000	0.86		3.4	FLOOD RISK	18
S1.001	SSW1	7.050	0.000	0.000	0.01		4.3	FLOOD	20
S2.000	SPP2	6.888	0.292	0.000	1.15		4.5	FLOOD RISK	21
S1.002	SSW2	6.884	-0.058	0.000	0.01		3.6	FLOOD RISK	15
s3.000	SPP3	6.798	0.310	0.000	0.67		2.6	FLOOD RISK	19
S1.003	SSW3	6.796	-0.038	0.000	0.01		3.5	FLOOD RISK	17
S4.000	SPP4	6.691	0.311	0.000	0.29		1.2	FLOOD RISK	10
S1.004	SSW4	6.690	-0.036	0.000	0.01		3.0	FLOOD RISK	8
S5.000	SPP5	6.593	0.321	0.000	0.24		1.0	FLOOD RISK	9
S1.005	SSW5	6.592	-0.026	0.000	0.01		2.9	FLOOD RISK	9
S1.006	SOutlet	6.495	0.210	0.000	0.09		2.5	FLOOD RISK	10

CH2M		Page 5
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 29/05/2018 18:58	Designed by DD048136	Designation
File Portishead Catchment 1.MDX	Checked by	Drainage
XP Solutions	Network 2017.1.2	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 5 Number of Online Controls 6 Number of Storage Structures 5 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.350
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s)

Duration(s) (mins)

15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080

Return Period(s) (years)

Climate Change (%)

Summer and Winter 90, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080

30, 100

	US/MH			Climate	First		First (Y)	First (Z)	
PN	Name	Storm	Period	Change	Surch	arge	Flood	Overflow	Act.
S1.000	SPP1	180 Winter	100	+40%	30/15	Summer	100/60 Wint	er	
S1.001	SSW1	360 Winter	100	+40%	30/240	Summer	30/120 Summ	er	
S2.000	SPP2	720 Winter	100	+40%	30/15	Summer	100/60 Wint	er	
S1.002	SSW2	600 Winter	100	+40%	100/180	Winter	100/180 Wint	er	
S3.000	SPP3	1440 Winter	100	+40%	30/15	Summer	100/120 Wint	er	
S1.003	SSW3	1440 Winter	100	+40%	100/240	Winter	100/240 Wint	er	
S4.000	SPP4	2160 Winter	100	+40%	30/15	Summer	100/720 Wint	er	
S1.004	SSW4	2160 Winter	100	+40%	100/720	Winter	100/720 Wint	er	
S5.000	SPP5	2880 Winter	100	+40%	30/15	Summer	100/960 Wint	er	
S1.005	SSW5	2880 Winter	100	+40%	100/960	Winter	100/960 Wint	er	
S1.006	SOutlet	2880 Winter	100	+40%	30/120	Summer	100/720 Wint	er	

CH2M		Page 6
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 29/05/2018 18:58	Designed by DD048136	Desinago
File Portishead Catchment 1.MDX	Checked by	niamage
XP Solutions	Network 2017.1.2	

$\frac{\text{100 year Return Period Summary of Critical Results by Maximum Level (Rank 1)}}{\text{for Storm}}$

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S1.000	SPP1	7.064	0.360	13.782	1.59		6.3	FLOOD	18
S1.001	SSW1	7.051	0.001	1.114	0.01		5.5	FLOOD	20
S2.000	SPP2	6.960	0.364	17.982	1.90		7.5	FLOOD	21
S1.002	SSW2	6.957	0.015	14.853	0.01		3.9	FLOOD	15
S3.000	SPP3	6.856	0.368	22.329	0.98		3.8	FLOOD	19
S1.003	SSW3	6.855	0.021	20.948	0.01		3.5	FLOOD	17
S4.000	SPP4	6.741	0.361	14.781	0.46		1.8	FLOOD	10
S1.004	SSW4	6.740	0.014	14.433	0.01		3.2	FLOOD	8
S5.000	SPP5	6.631	0.359	12.853	0.35		1.4	FLOOD	9
S1.005	SSW5	6.631	0.013	12.818	0.01		3.3	FLOOD	9
S1.006	SOutlet	6.527	0.242	17.030	0.10		2.6	FLOOD	10

CH2M Hill		Page 1
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 22/05/2018 13:52	Designed by IR065829	Desipage
File	Checked by	Dialilage
Micro Drainage	Network 2017.1.2	,

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN	Hyd	Diam	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	Sect	(mm)	Name	(m)	(m)	(m)	Connection	(mm)
S1.000	0	150	S1	7.500	6.100	1.250	Open Manhole	1200
S1.001	0	225	S2	7.000	5.572	1.203	Open Manhole	1200
S1.002	0	225	s3	7.710	5.305	2.180	Open Manhole	1200
S1.003	0	225	S4	8.230	5.038	2.967	Open Manhole	1200

Downstream Manhole

PN	Length	Slope	MH	C.Level	I.Level	D.Depth	MH	MH DIAM., L*W
	(m)	(1:X)	Name	(m)	(m)	(m)	Connection	(mm)
S1.000	45.000	99.3	S2	7.000	5.647	1.203	Open Manhole	1200
S1.001	45.000	168.5	s3	7.710	5.305	2.180	Open Manhole	1200
S1.002	45.000	168.5	S4	8.230	5.038	2.967	Open Manhole	1200
S1.003	45.000	164.8	S	8.900	4.765	3.910	Open Manhole	0

CH2M Hill		Page 2
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 22/05/2018 13:52	Designed by IR065829	Desipago
File	Checked by	Dialilade
Micro Drainage	Network 2017.1.2	

Area Summary for Storm

Pipe	PIMP	PIMP	PIMP	Gross	Imp.	Pipe Total
Number	Type	Name	(%)	Area (ha)	Area (ha)	(ha)
1 000			1.00	0.070	0 070	0 070
1.000	_	-	_ 00	0.078	0.078	0.078
1.001	-	-	100	0.078	0.078	0.078
1.002	_	-	100	0.079	0.079	0.079
1.003	_	-	100	0.078	0.078	0.078
				Total	Total	Total
				0 313	0 313	0 313

CH2M Hill		Page 3
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 22/05/2018 13:52	Designed by IR065829	Desinado
File	Checked by	Dialilacie
Micro Drainage	Network 2017.1.2	

Summary Wizard of 15 minute 1 year Summer I+0% for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000
Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.350
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

			Water	Surcharged	Flooded			Pipe	
	US/MH	Storm	Level	Depth	Volume	Flow /	Overflow	Flow	
PN	Name	Rank	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status
S1.000	S1	64	6.197	-0.053	0.000	0.69		11.9	OK
S1.001	S2	64	5.688	-0.109	0.000	0.51		19.4	OK
S1.002	s3	64	5.446	-0.084	0.000	0.69		26.3	OK
S1.003	S4	64	5.201	-0.062	0.000	0.84		32.4	OK

CH2M Hill		Page 4
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 22/05/2018 13:52	Designed by IR065829	Designation
File	Checked by	Diamage
Micro Drainage	Network 2017.1.2	,

Summary Wizard of 15 minute 2 year Summer I+0% for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000

Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000

Hot Start Level (mm) 0 Inlet Coefficient 0.800

Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000

Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.350
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440

Return Period(s) (years) 1, 2, 5, 30

Climate Change (%) 0, 0, 0, 0

			Water	Surcharged	Flooded			Pipe	
	US/MH	Storm	Level	Depth	Volume	Flow /	Overflow	Flow	
PN	Name	Rank	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status
S1.000	S1	52	6.217	-0.033	0.000	0.89		15.4	OK
S1.001	S2	52	5.709	-0.088	0.000	0.66		25.0	OK
S1.002	s3	52	5.476	-0.054	0.000	0.88		33.7	OK
S1.003	S4	52	5.280	0.017	0.000	1.04		39.9	SURCHARGED

CH2M Hill		Page 5
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 22/05/2018 13:52	Designed by IR065829	Designation
File	Checked by	Diamage
Micro Drainage	Network 2017.1.2	,

Summary Wizard of 15 minute 5 year Summer I+0% for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000

Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000

Hot Start Level (mm) 0 Inlet Coefficient 0.800

Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000

Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.350
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440

Return Period(s) (years) 1, 2, 5, 30

Climate Change (%) 0, 0, 0, 0

			Water	Surcharged	Flooded			Pipe	
	US/MH	Storm	Level	Depth	Volume	Flow /	Overflow	Flow	
PN	Name	Rank	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status
S1.000	S1	88	6.324	0.074	0.000	1.04		18.1	SURCHARGED
S1.001	S2	88	5.745	-0.052	0.000	0.81		30.9	OK
S1.002	s3	88	5.617	0.087	0.000	0.96		36.7	SURCHARGED
S1.003	S4	88	5.372	0.109	0.000	1.19		45.9	SURCHARGED

CH2M Hill		Page 6
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 22/05/2018 13:52	Designed by IR065829	Desipago
File	Checked by	Drainage
Micro Drainage	Network 2017.1.2	•

Summary Wizard of 15 minute 30 year Summer I+0% for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000
Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 0 Number of Storage Structures 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.350
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440

Return Period(s) (years) 1, 2, 5, 30

Climate Change (%) 0, 0, 0, 0

			Water	Surcharged	Flooded			Pipe	
	US/MH	${\tt Storm}$	Level	Depth	Volume	Flow /	Overflow	Flow	
PN	Name	Rank	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status
S1.000	S1	76	6.838	0.588	0.000	1.19		20.6	SURCHARGED
S1.001	S2	76	6.510	0.713	0.000	0.88		33.4	SURCHARGED
S1.002	s3	76	6.293	0.763	0.000	1.29		49.3	SURCHARGED
S1.003	S4	76	5.823	0.560	0.000	1.69		65.0	SURCHARGED

CH2M Hill		Page 1
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 22/05/2018 15:27	Designed by IR065829	Desinado
File PORTISHEAD-CAT2.MDX	Checked by	Dialilade
Micro Drainage	Network 2017.1.2	

Existing Network Details for Storm

- Indicates pipe length does not match coordinates

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section Type
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)	SECT	(mm)	
1.000	30.000	0.200	150.0	0.064	3.00	0.0	0.600	0	225	Pipe/Conduit
1.001	33.269	0.227	146.6	0.074	3.00	0.0	0.600	0	225	Pipe/Conduit
2.000	40.000#	0.400	100.0	0.085	3.00	0.0	0.600	0	225	Pipe/Conduit
1.002	1.000#	0.010	100.0	0.000	3.00	0.0	0.600	0	225	Pipe/Conduit
1.003	72.000#	0.460	156.5	0.166	3.00	0.0	0.600	0	225	Pipe/Conduit
1.004	45.000#	0.300	150.0	0.109	3.00	0.0	0.600	0	225	Pipe/Conduit

Network Results Table

PN	US/IL (m)		Σ Base Flow (1/s)		-
	6.050 5.850	0.064 0.138		1.07 1.08	
2.000	6.200	0.085	0.0	1.31	52.0
1.003	5.620 5.610 5.150		0.0	1.31 1.04	

CH2M Hill		Page 2
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 22/05/2018 15:27	Designed by IR065829	Desinago
File PORTISHEAD-CAT2.MDX	Checked by	Dialilade
Micro Drainage	Network 2017.1.2	•

Area Summary for Storm

Pipe Number		PIMP Name	PIMP (%)	Gross Area (ha)	Imp. Area (ha)	Pipe Total (ha)
1.000	_	_	100	0.064	0.064	0.064
1.001	-	-	100	0.074	0.074	0.074
2.000	_	-	100	0.085	0.085	0.085
1.002	_	-	100	0.000	0.000	0.000
1.003	_	-	100	0.166	0.166	0.166
1.004	_	-	100	0.109	0.109	0.109
				Total	Total	Total
				0.498	0.498	0.498

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 40.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 2 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type	Summer
Return Period (years)	30	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.000	Storm Duration (mins)	30
Patio P	0.350		

CH2M Hill		Page 3
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 22/05/2018 15:27	Designed by IR065829	Designation
File PORTISHEAD-CAT2.MDX	Checked by	Diali lacje
Micro Drainage	Network 2017.1.2	

Storage Structures for Storm

Tank or Pond Manhole: 6, DS/PN: 1.002

Invert Level (m) 5.620

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 150.0 0.150 150.0

Tank or Pond Manhole: 8, DS/PN: 1.004

Invert Level (m) 5.150

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 60.0 0.150 60.0

CH2M Hill		Page 4
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Missa
Date 22/05/2018 15:27	Designed by IR065829	Designation
File PORTISHEAD-CAT2.MDX	Checked by	Dialilade
Micro Drainage	Network 2017.1.2	

$\frac{30 \text{ year Return Period Summary of Critical Results by Maximum Outflow (Rank 1)}{\text{for Storm}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 40.000

Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000

Hot Start Level (mm) 0 Inlet Coefficient 0.800

Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000

Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 2 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.350 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440
Return Period(s) (years) 1, 2, 5, 10, 30, 100
Climate Change (%) 0, 0, 0, 0, 0, 0

PN	US/MH Name	:	Storm		Climate Change	First Surcl	t (X) narge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	
1.000	1	15	Summer	30	+0%	10/15	Summer				6.552	
1.001	2	15	Summer	30	+0%	5/15	Summer				6.434	
2.000	5	15	Summer	30	+0%	100/15	Summer				6.378	
1.002	6	60	Winter	30	+0%	5/30	Winter				6.048	
1.003	7	15	Summer	30	+0%	5/15	Summer				5.973	
1.004	8	60	Winter	30	+0%	1/15	Summer				5.732	

		${\tt Surcharged}$	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.000	1	0.277	0.000	0.74		29.1	SURCHARGED	
1.001	2	0.359	0.000	1.53		61.5	SURCHARGED	
2.000	5	-0.047	0.000	0.93		46.0	OK	
1.002	6	0.203	0.000	1.00		30.0	SURCHARGED	

CH2M Hill		Page 5
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 22/05/2018 15:27	Designed by IR065829	Desinago
File PORTISHEAD-CAT2.MDX	Checked by	Dialilade
Micro Drainage	Network 2017.1.2	

 $\frac{\text{30 year Return Period Summary of Critical Results by Maximum Outflow (Rank 1)}}{\text{for Storm}}$

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1.003	7	0.138	0.000	1.02		41.2	SURCHARGED	
1.004	8	0.357	0.000	1.19		48.1	SURCHARGED	

CH2M Hill		Page 1
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 22/05/2018 15:29	Designed by IR065829	Desinado
File PORTISHEAD-CAT2.MDX	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

Existing Network Details for Storm

- Indicates pipe length does not match coordinates

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section Type
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)	SECT	(mm)	
1.000	30.000	0.200	150.0	0.064	3.00	0.0	0.600	0	225	Pipe/Conduit
1.001	33.269	0.227	146.6	0.074	3.00	0.0	0.600	0	225	Pipe/Conduit
2.000	40.000#	0.400	100.0	0.085	3.00	0.0	0.600	0	225	Pipe/Conduit
1.002	1.000#	0.010	100.0	0.000	3.00	0.0	0.600	0	225	Pipe/Conduit
1.003	72.000#	0.460	156.5	0.166	3.00	0.0	0.600	0	225	Pipe/Conduit
1.004	45.000#	0.300	150.0	0.109	3.00	0.0	0.600	0	225	Pipe/Conduit

Network Results Table

PN	US/IL (m)		Σ Base Flow (1/s)		-
	6.050 5.850			1.07 1.08	42.4 42.9
2.000	6.200	0.085	0.0	1.31	52.0
1.003	5.620 5.610 5.150	0.223 0.389 0.498	0.0	1.31 1.04 1.07	52.0 41.5 42.4

CH2M Hill		Page 2
Ash House		
Falcon Road Sowton		Yu I
Exeter EX2 7LB		Mireda
Date 22/05/2018 15:29	Designed by IR065829	Desinado
File PORTISHEAD-CAT2.MDX	Checked by	Diali large
Micro Drainage	Network 2017.1.2	

Area Summary for Storm

Pipe Number			PIMP	Gross Area (ha)	Imp.	Pipe Total (ha)
Number	туре	Name	(0)	Area (na)	Area (na)	(IIa)
1.000	_	_	100	0.064	0.064	0.064
1.001	_	-	100	0.074	0.074	0.074
2.000	_	-	100	0.085	0.085	0.085
1.002	_	-	100	0.000	0.000	0.000
1.003	_	-	100	0.166	0.166	0.166
1.004	_	-	100	0.109	0.109	0.109
				Total	Total	Total
				0.498	0.498	0.498

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 40.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 2 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type	Summer
Return Period (years)	30	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	20.000	Storm Duration (mins)	30
Patio P	0.350		

CH2M Hill		Page 3
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 22/05/2018 15:29	Designed by IR065829	Designation
File PORTISHEAD-CAT2.MDX	Checked by	Dialilada
Micro Drainage	Network 2017.1.2	'

Storage Structures for Storm

Tank or Pond Manhole: 6, DS/PN: 1.002

Invert Level (m) 5.620

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 150.0 0.150 150.0

Tank or Pond Manhole: 8, DS/PN: 1.004

Invert Level (m) 5.150

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 60.0 0.150 60.0

CH2M Hill		Page 4
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 22/05/2018 15:29	Designed by IR065829	Drainage
File PORTISHEAD-CAT2.MDX	Checked by	Dialilade
Micro Drainage	Network 2017.1.2	

Summary of Critical Results by Maximum Outflow (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 40.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 2 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.350
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720,
960, 1440
Return Period(s) (years) 1, 2, 5, 10, 30, 100
Climate Change (%) 0, 0, 0, 0, 0, 0

	US/MH			Return	Climate	First	t (X)	First (Y)	First (Z)	Overflow	Water Level	
PN	Name	:	Storm	Period	Change	Surcl	narge	Flood	Overflow	Act.	(m)	
1.000	1	15	Summer	100	+0%	10/15	Summer				6.978	
1.001	2	15	Summer	100	+0%	5/15	Summer				6.802	
2.000	5	15	Summer	100	+0%	100/15	Summer				6.618	
1.002	6	60	Winter	100	+0%	5/30	Winter				6.239	
1.003	7	15	Summer	100	+0%	5/15	Summer				6.130	
1.004	8	60	Winter	100	+0%	1/15	Summer				5.858	

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
1.000	1	0.703	0.000	0.92		36.3	SURCHARGED	
1.001	2	0.727	0.000	1.90		76.6	SURCHARGED	
2.000	5	0.193	0.000	1.19		58.8	SURCHARGED	
1.002	6	0.394	0.000	1.14		34.0	SURCHARGED	
1.003	7	0.295	0.000	1.11		44.6	SURCHARGED	

CH2M Hill		Page 5
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 22/05/2018 15:29	Designed by IR065829	Desipago
File PORTISHEAD-CAT2.MDX	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

 $\underline{\textbf{Summary of Critical Results by Maximum Outflow (Rank 1) for Storm}}$

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
1 004	0	0 403	0 000	1 20		52 5	CIIDCUADCED	

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 18/05/2018 16:42	Designed by DD048136	Desinado
File Porstishead Station - Ca	Checked by	Dialilade
XP Solutions	Network 2017.1.2	

$\underline{\hbox{\tt STORM SEWER DESIGN by the Modified Rational Method}}$

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1		k (mm)	n	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	15.402	0.100	154.0	0.034	5.00		0.0	0.600		0	150	Pipe/Conduit	•
S1.001	18.201	0.300	60.7	0.048	0.00		0.0	0.600		0	150	Pipe/Conduit	ă
S1.002	20.065	0.400	50.2	0.047	0.00		0.0		0.040	4 \=/	1000	1:4 Swale	ā
S1.003	20.093	0.300	67.0	0.035	0.00		0.0		0.040	4 \=/	1000	1:4 Swale	ā
S1.004	20.020	0.550	36.4	0.073	0.00		0.0		0.040	4 \=/	1000	1:4 Swale	ā
S1.005	20.753	0.250	83.0	0.035	0.00		0.0		0.040	4 \=/	1000	1:4 Swale	ā
S1.006	15.035	0.090	167.1	0.000	0.00		0.0	0.600		0	225	Pipe/Conduit	ě

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S1.000	50.00	5 32	6.800	0.034	0.0	0.0	0.0	0.81	14.3	4.6
S1.000	50.00		6.650	0.082	0.0	0.0	0.0	1.29		11.2
S1.002	50.00	5.97	7.550	0.129	0.0	0.0	0.0	0.80	191.3	17.5
S1.003	50.00	6.46	7.150	0.164	0.0	0.0	0.0	0.69	165.5	22.2
S1.004	50.00	6.81	6.850	0.237	0.0	0.0	0.0	0.94	224.5	32.1
S1.005	50.00	7.37	6.300	0.273	0.0	0.0	0.0	0.62	148.7	36.9
S1.006	50.00	7.62	4.850	0.273	0.0	0.0	0.0	1.01	40.1	36.9

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 18/05/2018 16:42	Designed by DD048136	Desinado
File Porstishead Station - Ca	Checked by	namaye
XP Solutions	Network 2017.1.2	

$\frac{30 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank 1)}{\text{for Storm}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000
Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 6 Number of Storage Structures 6 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.350
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

Profile(s)

Duration(s) (mins)

15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080

Return Period(s) (years)

Climate Change (%)

PN	US/MH Name	St	corm		Climate Change		t (X) harge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)	
S1.000	SFD1	120 V	Winter	30	+40%	30/15	Summer				8.120	
S1.001	SFD2	120 V	Winter	30	+40%	30/15	Summer				8.102	
S1.002	SSW1	15 T	Winter	30	+40%						7.821	
S1.003	SSW2	15 V	Winter	30	+40%						7.434	
S1.004	SSW3	15 T	Winter	30	+40%						7.157	
S1.005	SSW4	30 \$	Summer	30	+40%						6.616	
S1.006	SOutlet	30 1	Winter	30	+40%	30/15	Summer				6.389	

PN	US/MH Name	Surcharged Depth (m)			Overflow (1/s)	Pipe Flow (1/s)	Status	Level Exceeded
S1.000	SFD1	1.170	0.000	0.30		3.9	FLOOD RISK	

CH2M	Page 3	
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 18/05/2018 16:42	Designed by DD048136	Desinado
File Porstishead Station - Ca	Checked by	Diamage
XP Solutions	Network 2017.1.2	

$\frac{30 \text{ year Return Period Summary of Critical Results by Maximum Level (Rank 1)}{\text{for Storm}}$

		Surcharged	Flooded			Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S1.001	SFD2	1.302	0.000	0.44		9.4	FLOOD RISK	
S1.002	SSW1	-0.079	0.000	0.02		22.7	FLOOD RISK	
S1.003	SSW2	-0.066	0.000	0.04		32.7	FLOOD RISK	
S1.004	SSW3	-0.043	0.000	0.05		58.3	FLOOD RISK	
S1.005	SSW4	-0.034	0.000	0.08		66.6	FLOOD RISK	
S1.006	SOutlet	1.314	0.000	1.01		35.7	FLOOD RISK	

CH2M Hill		Page 1
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 23/05/2018 22:40	Designed by IR065829	Desinago
File PORTISHEAD-CAT3-100RP.MDX	Checked by	Drainage
Micro Drainage	Network 2017.1.2	

Summary of Critical Results by Maximum Flood Volume (Rank 1) for Storm

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000
Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000
Hot Start Level (mm) 0 Inlet Coefficient 0.800
Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000
Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 6 Number of Storage Structures 6 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FSR Ratio R 0.350
Region England and Wales Cv (Summer) 0.750
M5-60 (mm) 20.000 Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON

	US/MH		Return	Climate	Firs	t (X)	First	t (Y)	First (Z)	Overflow
PN	Name	Storm	Period	Change	Surc	harge	Flo	ood	Overflow	Act.
S1.000	SFD1	600 Winter	30	+40%	30/15	Summer				
S1.001	SFD2	600 Winter	30	+40%	30/15	Summer				
S1.002	SSW1	600 Winter	30	+40%						
S1.003	SSW2	600 Winter	30	+40%						
S1.004	SSW3	600 Winter	30	+40%						
S1.005	SSW4	600 Winter	30	+40%						
S1.006	SOutlet	60 Winter	100	+40%	30/15	Summer	100/15	Summer		

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S1.000	SFD1	8.092	1.142	0.000	0.12		1.6	FLOOD RISK	
S1.001	SFD2	8.085	1.285	0.000	0.18		3.9	FLOOD RISK	
S1.002	SSW1	7.792	-0.108	0.000	0.01		6.2	FLOOD RISK	
S1.003	SSW2	7.396	-0.104	0.000	0.01		7.8	FLOOD RISK	
			@1.00	2 2017	VD 0 - 1				

CH2M Hill		Page 2
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 23/05/2018 22:40	Designed by IR065829	Desinado
File PORTISHEAD-CAT3-100RP.MDX	Checked by	niamage
Micro Drainage	Network 2017.1.2	

Summary of Critical Results by Maximum Flood Volume (Rank 1) for Storm

		Water	Surcharged	Flooded			Pipe		
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded
S1.004	SSW3	7.104	-0.096	0.000	0.01		11.3	FLOOD RISK	
S1.005	SSW4	6.557	-0.093	0.000	0.02		13.0	FLOOD RISK	
S1.006	SOutlet	6.414	1.339	14.008	1.01		35.7	FLOOD	8

CH2M Hill		Page 1
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 16/05/2018 17:05	Designed by IR065829	Desipago
File Portishead-Cat4a-1-30.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

Half Drain Time : 625 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	6.587	0.137	0.0	0.5	0.5	16.3	ОК
30	min	Summer	6.617	0.167	0.0	0.5	0.5	21.7	O K
60	min	Summer	6.647	0.197	0.0	0.6	0.6	27.2	ОК
120	min	Summer	6.676	0.226	0.0	0.6	0.6	32.5	O K
180	min	Summer	6.690	0.240	0.0	0.6	0.6	35.1	0 K
240	min	Summer	6.698	0.248	0.0	0.6	0.6	36.6	O K
360	min	Summer	6.707	0.257	0.0	0.6	0.6	38.0	Flood Risk
480	min	Summer	6.709	0.259	0.0	0.6	0.6	38.4	Flood Risk
600	min	Summer	6.710	0.260	0.0	0.6	0.6	38.6	Flood Risk
720	min	Summer	6.709	0.259	0.0	0.6	0.6	38.6	Flood Risk
960	min	Summer	6.708	0.258	0.0	0.6	0.6	38.2	Flood Risk
1440	min	Summer	6.701	0.251	0.0	0.6	0.6	36.9	Flood Risk
2160	min	Summer	6.687	0.237	0.0	0.6	0.6	34.4	O K
2880	min	Summer	6.673	0.223	0.0	0.6	0.6	32.0	O K
4320	min	Summer	6.649	0.199	0.0	0.6	0.6	27.6	O K
5760	min	Summer	6.629	0.179	0.0	0.5	0.5	23.8	O K
7200	min	Summer	6.612	0.162	0.0	0.5	0.5	20.7	O K
8640	min	Summer	6.597	0.147	0.0	0.5	0.5	18.1	O K

	Storm		Raın	Flooded	Discharge	Time-Peak	
	Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	101.754	0.0	16.8	26	
30	min	Summer	67.708	0.0	22.5	41	
60	min	Summer	43.136	0.0	28.7	70	
120	min	Summer	26.651	0.0	35.6	128	
180	min	Summer	19.868	0.0	39.8	186	
240	min	Summer	16.054	0.0	42.9	244	
360	min	Summer	11.891	0.0	47.7	362	
480	min	Summer	9.596	0.0	51.4	446	
600	min	Summer	8.121	0.0	54.4	502	
720	min	Summer	7.083	0.0	56.9	564	
960	min	Summer	5.703	0.0	61.1	694	
1440	min	Summer	4.198	0.0	67.4	970	
2160	min	Summer	3.085	0.0	74.3	1384	
2880	min	Summer	2.477	0.0	79.5	1792	
4320	min	Summer	1.816	0.0	87.3	2596	
5760	min	Summer	1.456	0.0	93.2	3352	
7200	min	Summer	1.227	0.0	98.0	4112	
8640	min	Summer	1.067	0.0	102.2	4848	
		©19	82-2017	XP Sol	utions		

CH2M Hill		Page 2
Ash House		
Falcon Road Sowton		9
Exeter EX2 7LB		Micco
Date 16/05/2018 17:05	Designed by IR065829	Desinago
File Portishead-Cat4a-1-30.SRCX	Checked by	Diali larje
Micro Drainage	Source Control 2017.1.2	

Storm Event			Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
10080	min s	Summer	6.585	0.135	0.0	0.5	0.5	15.8	ОК
		Winter			0.0	0.5	0.5		0 K
30	min V	Winter	6.632	0.182	0.0	0.5	0.5	24.4	ОК
60	min V	Winter	6.666	0.216	0.0	0.6	0.6	30.6	ОК
120	min V	Winter	6.699	0.249	0.0	0.6	0.6	36.7	ОК
180	min V	Winter	6.716	0.266	0.0	0.7	0.7	39.8	Flood Risk
240	min V	Winter	6.726	0.276	0.0	0.7	0.7	41.6	Flood Risk
360	min V	Winter	6.737	0.287	0.0	0.7	0.7	43.6	Flood Risk
480	min V	Winter	6.741	0.291	0.0	0.7	0.7	44.3	Flood Risk
600	min V	Winter	6.741	0.291	0.0	0.7	0.7	44.4	Flood Risk
720	min V	Winter	6.740	0.290	0.0	0.7	0.7	44.2	Flood Risk
960	min V	Winter	6.738	0.288	0.0	0.7	0.7	43.7	Flood Risk
1440	min V	Winter	6.727	0.277	0.0	0.7	0.7	41.8	Flood Risk
2160	min V	Winter	6.707	0.257	0.0	0.6	0.6	38.0	Flood Risk
2880	min V	Winter	6.686	0.236	0.0	0.6	0.6	34.3	O K
4320	min V	Winter	6.650	0.200	0.0	0.6	0.6	27.8	O K
5760	min V	Winter	6.622	0.172	0.0	0.5	0.5	22.6	O K
7200	min V	Winter	6.599	0.149	0.0	0.5	0.5	18.4	O K
8640	min V	Winter	6.581	0.131	0.0	0.4	0.4	15.1	O K

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
10080	min	Summer	0.948	0.0	105.8	5552
15	min	Winter	101.754	0.0	18.8	26
30	min	Winter	67.708	0.0	25.2	40
60	min	Winter	43.136	0.0	32.2	68
120	min	Winter	26.651	0.0	39.9	126
180	min	Winter	19.868	0.0	44.7	182
240	min	Winter	16.054	0.0	48.1	240
360	min	Winter	11.891	0.0	53.5	352
480	min	Winter	9.596	0.0	57.6	462
600	min	Winter	8.121	0.0	60.9	564
720	min	Winter	7.083	0.0	63.8	590
960	min	Winter	5.703	0.0	68.5	740
1440	min	Winter	4.198	0.0	75.3	1046
2160	min	Winter	3.085	0.0	83.3	1496
2880	min	Winter	2.477	0.0	89.1	1932
4320	min	Winter	1.816	0.0	97.9	2736
5760	min	Winter	1.456	0.0	104.5	3520
7200	min	Winter	1.227	0.0	110.0	4264
8640	min	Winter	1.067	0.0	114.6	5016
		©198	32-2017	XP Sol	utions	

CH2M Hill		Page 3
Ash House		
Falcon Road Sowton		L.
Exeter EX2 7LB		Micco
Date 16/05/2018 17:05	Designed by IR065829	Desipago
File Portishead-Cat4a-1-30.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	

10080 min Winter 6.566 0.116 0.0 0.4 0.4 12.3 O K

Storm	Rain	Flooded	Discharge	Time-Peak	
Event	(mm/hr)	Volume	Volume	(mins)	
		(m³)	(m³)		
10080 min Winter	0.948	0.0	118.7	5752	

CH2M Hill		Page 4
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 16/05/2018 17:05	Designed by IR065829	Desinago
File Portishead-Cat4a-1-30.SRCX	Checked by	Diali laye
Micro Drainage	Source Control 2017.1.2	

Rainfall Details

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

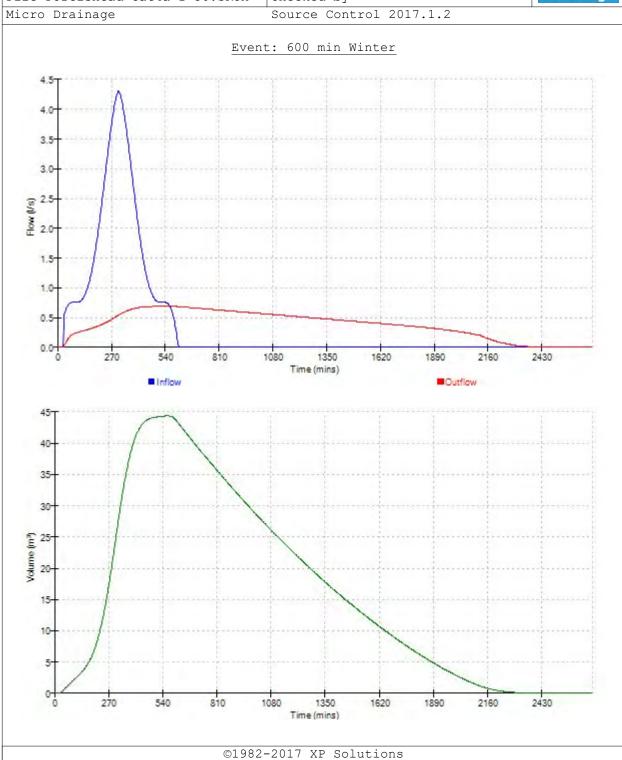
Total Area (ha) 0.090

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.030	4	8	0.030	8	12	0.030

CH2M Hill		Page 5
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 16/05/2018 17:05	Designed by IR065829	Desipago
File Portishead-Cat4a-1-30.SRCX	Checked by	Diamage
Micro Drainage	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 7.000


Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	4.0
Membrane Percolation (mm/hr)	1000	Length (m)	48.0
Max Percolation $(1/s)$	53.3	Slope (1:X)	500.0
Safety Factor	2.0	Depression Storage (mm)	2
Porosity	0.95	Evaporation (mm/day)	1
Invert Level (m)	6.450	Cap Volume Depth (m)	0.300

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 6.450

CH2M Hill		Page 6
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 16/05/2018 17:05	Designed by IR065829	Desiporo
File Portishead-Cat4a-1-30.SRCX	Checked by	Diali larie
Micro Drainage	Source Control 2017.1.2	

CH2M Hill		Page 1
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 16/05/2018 17:06	Designed by IR065829	Desipago
File Portishead-Cat4a-1-100.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

Half Drain Time : 636 minutes.

	Storm		Max	Max	Max	Max		Max	Max	Status
	Event		Level	Depth	${\tt Infiltration}$	Control	Σ	${\tt Outflow}$	Volume	
			(m)	(m)	(1/s)	(1/s)		(1/s)	(m³)	
			6 61 5	0 165	0.0	۰		0 5	01.0	
	min Sı				0.0	0.5		0.5	21.3	O K
	min Sı				0.0	0.6		0.6	28.6	O K
60	min Sı	ummer	6.696	0.246	0.0	0.6		0.6	36.1	O K
120	min Sı	ummer	6.736	0.286	0.0	0.7		0.7	43.3	Flood Risk
180	min Sı	ummer	6.755	0.305	0.0	0.7		0.7	46.8	Flood Risk
240	min St	ummer	6.767	0.317	0.0	0.7		0.7	48.8	Flood Risk
360	min St	ummer	6.782	0.332	0.0	0.7		0.7	50.9	Flood Risk
480	min St	ummer	6.787	0.337	0.0	0.7		0.7	51.5	Flood Risk
600	min St	ummer	6.788	0.338	0.0	0.7		0.7	51.5	Flood Risk
720	min St	ummer	6.787	0.337	0.0	0.7		0.7	51.4	Flood Risk
960	min St	ummer	6.783	0.333	0.0	0.7		0.7	51.0	Flood Risk
1440	min St	ummer	6.770	0.320	0.0	0.7		0.7	49.3	Flood Risk
2160	min St	ummer	6.751	0.301	0.0	0.7		0.7	46.1	Flood Risk
2880	min St	ummer	6.733	0.283	0.0	0.7		0.7	42.9	Flood Risk
4320	min St	ummer	6.702	0.252	0.0	0.6		0.6	37.2	Flood Risk
5760	min St	ummer	6.676	0.226	0.0	0.6		0.6	32.4	O K
7200	min St	ummer	6.654	0.204	0.0	0.6		0.6	28.4	O K
8640	min St	ummer	6.635	0.185	0.0	0.5		0.5	25.0	O K

	Storm Event		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)					
15	min	Summer	131.851	0.0	21.9	26					
30	min	Summer	88.566	0.0	29.5	41					
60	min	Summer	56.713	0.0	37.9	70					
120	min	Summer	35.004	0.0	46.9	128					
180	min	Summer	25.973	0.0	52.2	186					
240	min	Summer	20.877	0.0	56.0	246					
360	min	Summer	15.365	0.0	61.8	362					
480	min	Summer	12.341	0.0	66.2	480					
600	min	Summer	10.402	0.0	69.8	530					
720	min	Summer	9.042	0.0	72.8	594					
960	min	Summer	7.241	0.0	77.7	720					
1440	min	Summer	5.284	0.0	83.3	988					
2160	min	Summer	3.848	0.0	92.8	1408					
2880	min	Summer	3.068	0.0	98.6	1820					
4320	min	Summer	2.226	0.0	107.2	2604					
5760	min	Summer	1.771	0.0	113.6	3400					
7200	min	Summer	1.483	0.0	118.8	4176					
8640	min	Summer	1.284	0.0	123.3	4920					
	©1982-2017 XP Solutions										

CH2M Hill		Page 2
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 16/05/2018 17:06	Designed by IR065829	Desipago
File Portishead-Cat4a-1-100.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

	Storm Event			_	Max Infiltration				Status
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
10080	min S	Summer	6.620	0.170	0.0	0.5	0.5	22.2	O K
15	min V	Winter	6.630	0.180	0.0	0.5	0.5	24.0	O K
30	min V	Winter	6.674	0.224	0.0	0.6	0.6	32.2	O K
60	min V	Winter	6.721	0.271	0.0	0.7	0.7	40.7	Flood Risk
120	min V	Winter	6.768	0.318	0.0	0.7	0.7	48.9	Flood Risk
180	min V	Winter	6.803	0.353	0.0	0.8	0.8	53.0	Flood Risk
240	min V	Winter	7.000	0.550	0.0	1.0	1.0	55.2	FLOOD
360	min V	Winter	7.002	0.552	0.0	1.0	1.0	57.2	FLOOD
480	min V	Winter	7.003	0.553	0.0	1.0	1.0	57.8	FLOOD
600	min V	Winter	7.003	0.553	0.0	1.0	1.0	57.7	FLOOD
720	min V	Winter	7.003	0.553	0.0	1.0	1.0	57.7	FLOOD
960	min V	Winter	7.002	0.552	0.0	1.0	1.0	57.2	FLOOD
1440	min V	Winter	7.000	0.550	0.0	1.0	1.0	55.2	FLOOD
2160	min V	Winter	6.786	0.336	0.0	0.7	0.7	51.4	Flood Risk
2880	min V	Winter	6.754	0.304	0.0	0.7	0.7	46.7	Flood Risk
4320	min V	Winter	6.709	0.259	0.0	0.6	0.6	38.4	Flood Risk
5760	min V	Winter	6.672	0.222	0.0	0.6	0.6	31.8	O K
7200	min V	Winter	6.643	0.193	0.0	0.6	0.6	26.4	O K
8640	min V	Winter	6.619	0.169	0.0	0.5	0.5	22.0	O K

	Stor Even		Rain (mm/hr)	Vol		-	Time-Peak (mins)	
10080	min	Summer	1.137		0.0	127.2	5648	
15	min	Winter	131.851		0.0	24.5	26	
30	min	Winter	88.566		0.0	33.0	40	
60	min	Winter	56.713		0.0	42.5	68	
120	min	Winter	35.004		0.0	52.5	126	
180	min	Winter	25.973		0.0	58.5	184	
240	min	Winter	20.877		0.4	62.7	240	
360	min	Winter	15.365		2.4	69.3	352	
480	min	Winter	12.341		3.1	74.2	458	
600	min	Winter	10.402		3.0	78.2	546	
720	min	Winter	9.042		3.0	81.5	572	
960	min	Winter	7.241		2.4	87.0	724	
1440	min	Winter	5.284		0.5	91.2	1026	
2160	min	Winter	3.848		0.0	104.0	1516	
2880	min	Winter	3.068		0.0	110.6	1960	
4320	min	Winter	2.226		0.0	120.2	2776	
5760	min	Winter	1.771		0.0	127.3	3584	
7200	min	Winter	1.483		0.0	133.2	4336	
8640	min	Winter	1.284		0.0	138.3	5104	
		©198	32-2017	XP	Sol	utions		

CH2M Hill		Page 3
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 16/05/2018 17:06	Designed by IR065829	Desinago
File Portishead-Cat4a-1-100.SRCX	Checked by	Dialilage
Micro Drainage	Source Control 2017.1.2	

10080 min Winter 6.599 0.149 0.0 0.5 0.5 18.4 O K

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level (m)	Depth (m)	Infiltration (1/s)	Control (1/s)	Σ Outflow (1/s)	Volume (m³)	
	(111)	(111)	(1/5)	(1/5)	(1/5)	(1111-)	

Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m³) (m³)

10080 min Winter 1.137 0.0 142.7 5848

CH2M Hill		Page 4
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 16/05/2018 17:06	Designed by IR065829	Desinago
File Portishead-Cat4a-1-100.SRCX	Checked by	Diali laye
Micro Drainage	Source Control 2017.1.2	

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

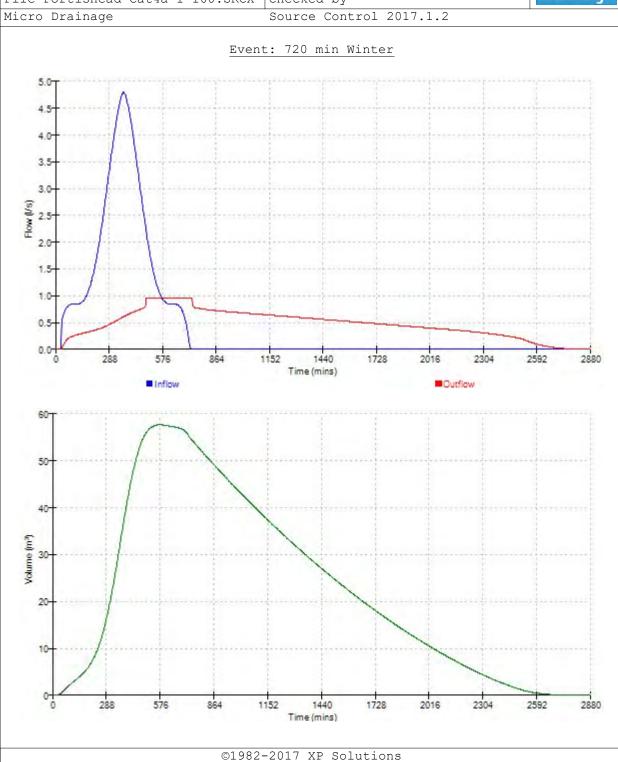
Total Area (ha) 0.090

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.030	4	8	0.030	8	12	0.030

CH2M Hill		Page 5
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 16/05/2018 17:06	Designed by IR065829	Desipago
File Portishead-Cat4a-1-100.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 7.000


Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	4.0
Membrane Percolation (mm/hr)	1000	Length (m)	48.0
Max Percolation $(1/s)$	53.3	Slope (1:X)	500.0
Safety Factor	2.0	Depression Storage (mm)	2
Porosity	0.95	Evaporation (mm/day)	1
Invert Level (m)	6.450	Cap Volume Depth (m)	0.300

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 6.450

CH2M Hill		Page 6
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 16/05/2018 17:06	Designed by IR065829	Desipago
File Portishead-Cat4a-1-100.SRCX	Checked by	Dialiarie
Micro Drainage	Source Control 2017.1.2	

CH2M Hill		Page 1
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 16/05/2018 17:00	Designed by IR065829	Desipago
File Portishead-Cat4b-1-30.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

Half Drain Time : 804 minutes.

	Stor		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min	Summer	6.571	0.121	0.0	0.4	0.4	19.5	O K
30	min	Summer	6.602	0.152	0.0	0.5	0.5	26.1	O K
60	min	Summer	6.636	0.186	0.0	0.5	0.5	33.1	O K
120	min	Summer	6.669	0.219	0.0	0.6	0.6	40.0	O K
180	min	Summer	6.686	0.236	0.0	0.6	0.6	43.6	O K
240	min	Summer	6.697	0.247	0.0	0.6	0.6	45.9	O K
360	min	Summer	6.710	0.260	0.0	0.6	0.6	48.5	Flood Risk
480	min	Summer	6.716	0.266	0.0	0.7	0.7	49.7	Flood Risk
600	min	Summer	6.718	0.268	0.0	0.7	0.7	50.2	Flood Risk
720	min	Summer	6.719	0.269	0.0	0.7	0.7	50.5	Flood Risk
960	min	Summer	6.720	0.270	0.0	0.7	0.7	50.6	Flood Risk
1440	min	Summer	6.717	0.267	0.0	0.7	0.7	50.1	Flood Risk
2160	min	Summer	6.707	0.257	0.0	0.6	0.6	48.1	Flood Risk
2880	min	Summer	6.696	0.246	0.0	0.6	0.6	45.7	O K
4320	min	Summer	6.673	0.223	0.0	0.6	0.6	40.9	O K
5760	min	Summer	6.653	0.203	0.0	0.6	0.6	36.7	O K
7200	min	Summer	6.636	0.186	0.0	0.5	0.5	33.1	O K
8640	min	Summer	6.621	0.171	0.0	0.5	0.5	30.0	O K

	Storm		Rain	Flooded	Discharge	Time-Peak		
	Event		(mm/hr)	Volume	Volume	(mins)		
				(m³)	(m³)			
15	min	Summer	101.754	0.0	19.8	26		
30	min	Summer	67.708	0.0	26.3	41		
60	min	Summer	43.136	0.0	34.5	70		
120	min	Summer	26.651	0.0	42.9	128		
180	min	Summer	19.868	0.0	48.0	188		
240	min	Summer	16.054	0.0	51.8	246		
360	min	Summer	11.891	0.0	57.7	364		
480	min	Summer	9.596	0.0	62.1	480		
600	min	Summer	8.121	0.0	65.7	564		
720	min	Summer	7.083	0.0	68.6	616		
960	min	Summer	5.703	0.0	72.8	740		
1440	min	Summer	4.198	0.0	76.0	1004		
2160	min	Summer	3.085	0.0	90.2	1416		
2880	min	Summer	2.477	0.0	96.6	1824		
4320	min	Summer	1.816	0.0	106.1	2640		
5760	min	Summer	1.456	0.0	113.3	3416		
7200	min	Summer	1.227	0.0	119.3	4184		
8640	min	Summer	1.067	0.0	124.4	4936		
		©19	82-2017	XP Sol	utions			

	Page 2
	4
	Micro
Designed by IR065829	Desipago
Checked by	Diali laye
Source Control 2017.1.2	,
	Checked by

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
10080	min S	ummer	6.608	0.158	0.0	0.5	0.5	27.3	ОК
15	min W	inter	6.583	0.133	0.0	0.5	0.5	22.0	O K
30	min W	inter	6.618	0.168	0.0	0.5	0.5	29.4	ОК
60	min W	inter	6.656	0.206	0.0	0.6	0.6	37.3	ОК
120	min W	Inter	6.694	0.244	0.0	0.6	0.6	45.2	ОК
180	min W	Inter	6.714	0.264	0.0	0.7	0.7	49.4	Flood Risk
240	min W	inter	6.726	0.276	0.0	0.7	0.7	52.0	Flood Risk
360	min W	inter	6.742	0.292	0.0	0.7	0.7	55.3	Flood Risk
480	min W	inter	6.750	0.300	0.0	0.7	0.7	56.9	Flood Risk
600	min W	inter	6.754	0.304	0.0	0.7	0.7	57.7	Flood Risk
720	min W	inter	6.755	0.305	0.0	0.7	0.7	57.9	Flood Risk
960	min W	inter	6.754	0.304	0.0	0.7	0.7	57.8	Flood Risk
1440	min W	inter	6.749	0.299	0.0	0.7	0.7	56.8	Flood Risk
2160	min W	inter	6.734	0.284	0.0	0.7	0.7	53.7	Flood Risk
2880	min W	inter	6.717	0.267	0.0	0.7	0.7	50.0	Flood Risk
4320	min W	inter	6.683	0.233	0.0	0.6	0.6	42.9	O K
5760	min W	inter	6.654	0.204	0.0	0.6	0.6	36.9	O K
7200	min W	inter	6.630	0.180	0.0	0.5	0.5	31.9	O K
8640	min W	inter	6.610	0.160	0.0	0.5	0.5	27.7	ОК

	Storm Event			Vol	ume	Discharge Volume (m³)	Time-Peak (mins)
10080	min	Summer	0.948		0.0	128.8	5664
15	min	Winter	101.754		0.0	22.3	26
30	min	Winter	67.708		0.0	29.2	40
60	min	Winter	43.136		0.0	38.7	68
120	min	Winter	26.651		0.0	48.1	126
180	min	Winter	19.868		0.0	53.9	184
240	min	Winter	16.054		0.0	58.2	242
360	min	Winter	11.891		0.0	64.7	356
480	min	Winter	9.596		0.0	69.6	468
600	min	Winter	8.121		0.0	73.4	576
720	min	Winter	7.083		0.0	76.3	680
960	min	Winter	5.703		0.0	79.9	772
1440	min	Winter	4.198		0.0	82.7	1078
2160	min	Winter	3.085		0.0	101.2	1536
2880	min	Winter	2.477		0.0	108.3	1972
4320	min	Winter	1.816		0.0	119.0	2816
5760	min	Winter	1.456		0.0	127.2	3632
7200	min	Winter	1.227		0.0	133.8	4400
8640	min	Winter	1.067		0.0	139.6	5192
		©198	32-2017	XP	Sol	utions	

CH2M Hill		Page 3
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 16/05/2018 17:00	Designed by IR065829	Desinago
File Portishead-Cat4b-1-30.SRCX	Checked by	Dialilads
Micro Drainage	Source Control 2017.1.2	

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	

10080 min Winter 6.593 0.143 0.0 0.5 0.5 24.2 O K

Storm	Rain	Flooded	Discharge	Time-Peak
Event	(mm/hr)	Volume (m³)	Volume (m³)	(mins)
10080 min Winter	0.948	0.0	144.6	5952

CH2M Hill		Page 4
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 16/05/2018 17:00	Designed by IR065829	Desinago
File Portishead-Cat4b-1-30.SRCX	Checked by	Diali laye
Micro Drainage	Source Control 2017.1.2	

Rainfall Details

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

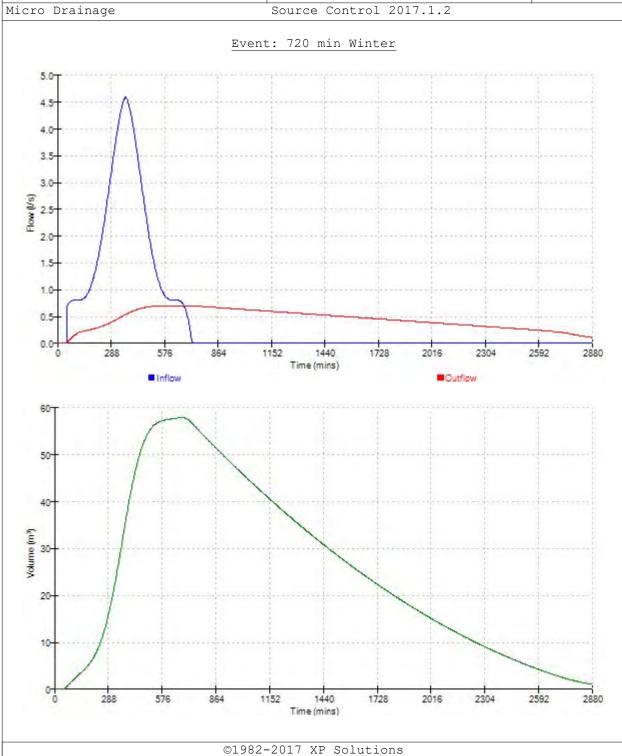
Total Area (ha) 0.110

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.037	4	8	0.037	8	12	0.037

CH2M Hill		Page 5
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 16/05/2018 17:00	Designed by IR065829	Desipago
File Portishead-Cat4b-1-30.SRCX	Checked by	namaye
Micro Drainage	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 7.000


Porous Car Park Structure

8.0	Width (m)	0.00000	Infiltration Coefficient Base (m/hr)
27.5	Length (m)	1000	Membrane Percolation (mm/hr)
500.0	Slope (1:X)	61.1	Max Percolation $(1/s)$
5	Depression Storage (mm)	2.0	Safety Factor
1	Evaporation (mm/day)	0.95	Porosity
0.300	Cap Volume Depth (m)	6.450	Invert Level (m)

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 6.450

CH2M Hill		Page 6
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 16/05/2018 17:00	Designed by IR065829	Desinado
File Portishead-Cat4b-1-30.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

CH2M Hill		Page 1
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 16/05/2018 17:06	Designed by IR065829	Desipago
File Portishead-Cat4a-1-100.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

Half Drain Time : 636 minutes.

	Storm		Max	Max	Max	Max		Max	Max	Status
	Event		Level	Depth	${\tt Infiltration}$	Control	Σ	${\tt Outflow}$	Volume	
			(m)	(m)	(1/s)	(1/s)		(1/s)	(m³)	
			6 61 5	0 165	0.0	۰		0 5	01.0	
	min Sı				0.0	0.5		0.5	21.3	O K
	min Sı				0.0	0.6		0.6	28.6	O K
60	min Sı	ummer	6.696	0.246	0.0	0.6		0.6	36.1	O K
120	min Sı	ummer	6.736	0.286	0.0	0.7		0.7	43.3	Flood Risk
180	min Sı	ummer	6.755	0.305	0.0	0.7		0.7	46.8	Flood Risk
240	min St	ummer	6.767	0.317	0.0	0.7		0.7	48.8	Flood Risk
360	min St	ummer	6.782	0.332	0.0	0.7		0.7	50.9	Flood Risk
480	min St	ummer	6.787	0.337	0.0	0.7		0.7	51.5	Flood Risk
600	min St	ummer	6.788	0.338	0.0	0.7		0.7	51.5	Flood Risk
720	min St	ummer	6.787	0.337	0.0	0.7		0.7	51.4	Flood Risk
960	min St	ummer	6.783	0.333	0.0	0.7		0.7	51.0	Flood Risk
1440	min St	ummer	6.770	0.320	0.0	0.7		0.7	49.3	Flood Risk
2160	min St	ummer	6.751	0.301	0.0	0.7		0.7	46.1	Flood Risk
2880	min St	ummer	6.733	0.283	0.0	0.7		0.7	42.9	Flood Risk
4320	min St	ummer	6.702	0.252	0.0	0.6		0.6	37.2	Flood Risk
5760	min St	ummer	6.676	0.226	0.0	0.6		0.6	32.4	O K
7200	min St	ummer	6.654	0.204	0.0	0.6		0.6	28.4	O K
8640	min St	ummer	6.635	0.185	0.0	0.5		0.5	25.0	O K

	Storm Event		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	131.851	0.0	21.9	26	
30	min	Summer	88.566	0.0	29.5	41	
60	min	Summer	56.713	0.0	37.9	70	
120	min	Summer	35.004	0.0	46.9	128	
180	min	Summer	25.973	0.0	52.2	186	
240	min	Summer	20.877	0.0	56.0	246	
360	min	Summer	15.365	0.0	61.8	362	
480	min	Summer	12.341	0.0	66.2	480	
600	min	Summer	10.402	0.0	69.8	530	
720	min	Summer	9.042	0.0	72.8	594	
960	min	Summer	7.241	0.0	77.7	720	
1440	min	Summer	5.284	0.0	83.3	988	
2160	min	Summer	3.848	0.0	92.8	1408	
2880	min	Summer	3.068	0.0	98.6	1820	
4320	min	Summer	2.226	0.0	107.2	2604	
5760	min	Summer	1.771	0.0	113.6	3400	
7200	min	Summer	1.483	0.0	118.8	4176	
8640	min	Summer	1.284	0.0	123.3	4920	
		©19	82-2017	XP Sol	utions		

CH2M Hill		Page 2
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 16/05/2018 17:06	Designed by IR065829	Desipago
File Portishead-Cat4a-1-100.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

	Storm Event			_	Max Infiltration				Status
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
10080	min S	Summer	6.620	0.170	0.0	0.5	0.5	22.2	O K
15	min V	Winter	6.630	0.180	0.0	0.5	0.5	24.0	O K
30	min V	Winter	6.674	0.224	0.0	0.6	0.6	32.2	O K
60	min V	Winter	6.721	0.271	0.0	0.7	0.7	40.7	Flood Risk
120	min V	Winter	6.768	0.318	0.0	0.7	0.7	48.9	Flood Risk
180	min V	Winter	6.803	0.353	0.0	0.8	0.8	53.0	Flood Risk
240	min V	Winter	7.000	0.550	0.0	1.0	1.0	55.2	FLOOD
360	min V	Winter	7.002	0.552	0.0	1.0	1.0	57.2	FLOOD
480	min V	Winter	7.003	0.553	0.0	1.0	1.0	57.8	FLOOD
600	min V	Winter	7.003	0.553	0.0	1.0	1.0	57.7	FLOOD
720	min V	Winter	7.003	0.553	0.0	1.0	1.0	57.7	FLOOD
960	min V	Winter	7.002	0.552	0.0	1.0	1.0	57.2	FLOOD
1440	min V	Winter	7.000	0.550	0.0	1.0	1.0	55.2	FLOOD
2160	min V	Winter	6.786	0.336	0.0	0.7	0.7	51.4	Flood Risk
2880	min V	Winter	6.754	0.304	0.0	0.7	0.7	46.7	Flood Risk
4320	min V	Winter	6.709	0.259	0.0	0.6	0.6	38.4	Flood Risk
5760	min V	Winter	6.672	0.222	0.0	0.6	0.6	31.8	O K
7200	min V	Winter	6.643	0.193	0.0	0.6	0.6	26.4	O K
8640	min V	Winter	6.619	0.169	0.0	0.5	0.5	22.0	O K

Storm Event		Rain (mm/hr)	Vol		-	Time-Peak (mins)		
10080	min	Summer	1.137		0.0	127.2	5648	
15	min	Winter	131.851		0.0	24.5	26	
30	min	Winter	88.566		0.0	33.0	40	
60	min	Winter	56.713		0.0	42.5	68	
120	min	Winter	35.004		0.0	52.5	126	
180	min	Winter	25.973		0.0	58.5	184	
240	min	Winter	20.877		0.4	62.7	240	
360	min	Winter	15.365		2.4	69.3	352	
480	min	Winter	12.341		3.1	74.2	458	
600	min	Winter	10.402		3.0	78.2	546	
720	min	Winter	9.042		3.0	81.5	572	
960	min	Winter	7.241		2.4	87.0	724	
1440	min	Winter	5.284		0.5	91.2	1026	
2160	min	Winter	3.848		0.0	104.0	1516	
2880	min	Winter	3.068		0.0	110.6	1960	
4320	min	Winter	2.226		0.0	120.2	2776	
5760	min	Winter	1.771		0.0	127.3	3584	
7200	min	Winter	1.483		0.0	133.2	4336	
8640	min	Winter	1.284		0.0	138.3	5104	
		©198	32-2017	XP	Sol	utions		

CH2M Hill		Page 3
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 16/05/2018 17:06	Designed by IR065829	Desinago
File Portishead-Cat4a-1-100.SRCX	Checked by	Dialilage
Micro Drainage	Source Control 2017.1.2	

10080 min Winter 6.599 0.149 0.0 0.5 0.5 18.4 O K

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level (m)	Depth (m)	Infiltration (1/s)	Control (1/s)	Σ Outflow (1/s)	Volume (m³)	
	(111)	(111)	(1/5)	(1/5)	(1/5)	(1111-)	

Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m³) (m³)

10080 min Winter 1.137 0.0 142.7 5848

CH2M Hill		Page 4
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 16/05/2018 17:06	Designed by IR065829	Desinago
File Portishead-Cat4a-1-100.SRCX	Checked by	Diali laye
Micro Drainage	Source Control 2017.1.2	

Rainfall Details

Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

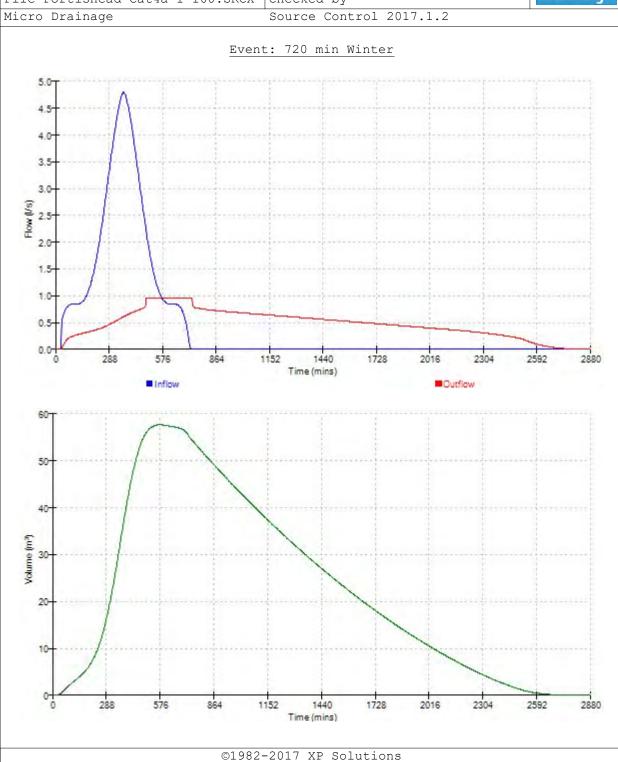
Total Area (ha) 0.090

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.030	4	8	0.030	8	12	0.030

CH2M Hill		Page 5
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 16/05/2018 17:06	Designed by IR065829	Desipago
File Portishead-Cat4a-1-100.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 7.000


Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	4.0
Membrane Percolation (mm/hr)	1000	Length (m)	48.0
Max Percolation $(1/s)$	53.3	Slope (1:X)	500.0
Safety Factor	2.0	Depression Storage (mm)	2
Porosity	0.95	Evaporation (mm/day)	1
Invert Level (m)	6.450	Cap Volume Depth (m)	0.300

Orifice Outflow Control

Diameter (m) 0.025 Discharge Coefficient 0.600 Invert Level (m) 6.450

CH2M Hill		Page 6
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 16/05/2018 17:06	Designed by IR065829	Desipago
File Portishead-Cat4a-1-100.SRCX	Checked by	Dialiards
Micro Drainage	Source Control 2017.1.2	

CH2M Hill		Page 1
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 16/05/2018 17:45	Designed by IR065829	Desipodo
File Portishead-Cat4c-1-100.SRCX	Checked by	Dialiards
Micro Drainage	Source Control 2017.1.2	

Half Drain Time : 714 minutes.

	Stor		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min	Summer	6.621	0.171	0.0	0.7	0.7	27.9	O K
30	min	Summer	6.649	0.199	0.0	0.8	0.8	37.1	O K
60	min	Summer	6.678	0.228	0.0	0.9	0.9	46.6	O K
120	min	Summer	6.706	0.256	0.0	0.9	0.9	55.9	Flood Risk
180	min	Summer	6.721	0.271	0.0	1.0	1.0	60.7	Flood Risk
240	min	Summer	6.729	0.279	0.0	1.0	1.0	63.4	Flood Risk
360	min	Summer	6.738	0.288	0.0	1.0	1.0	66.4	Flood Risk
480	min	Summer	6.741	0.291	0.0	1.0	1.0	67.5	Flood Risk
600	min	Summer	6.742	0.292	0.0	1.0	1.0	67.7	Flood Risk
720	min	Summer	6.742	0.292	0.0	1.0	1.0	67.7	Flood Risk
960	min	Summer	6.741	0.291	0.0	1.0	1.0	67.3	Flood Risk
1440	min	Summer	6.735	0.285	0.0	1.0	1.0	65.3	Flood Risk
2160	min	Summer	6.723	0.273	0.0	1.0	1.0	61.3	Flood Risk
2880	min	Summer	6.710	0.260	0.0	0.9	0.9	57.2	Flood Risk
4320	min	Summer	6.688	0.238	0.0	0.9	0.9	49.7	ОК
5760	min	Summer	6.668	0.218	0.0	0.8	0.8	43.2	O K
7200	min	Summer	6.651	0.201	0.0	0.8	0.8	37.6	O K
8640	min	Summer	6.636	0.186	0.0	0.8	0.8	32.8	O K

	Storm Event		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	101.754	0.0	28.7	26	
30	min	Summer	67.708	0.0	38.4	41	
60	min	Summer	43.136	0.0	49.1	70	
120	min	Summer	26.651	0.0	60.8	128	
180	min	Summer	19.868	0.0	68.1	186	
240	min	Summer	16.054	0.0	73.4	246	
360	min	Summer	11.891	0.0	81.6	362	
480	min	Summer	9.596	0.0	87.9	480	
600	min	Summer	8.121	0.0	93.0	532	
720	min	Summer	7.083	0.0	97.3	594	
960	min	Summer	5.703	0.0	104.5	720	
1440	min	Summer	4.198	0.0	115.0	990	
2160	min	Summer	3.085	0.0	127.0	1408	
2880	min	Summer	2.477	0.0	135.9	1820	
4320	min	Summer	1.816	0.0	149.3	2604	
5760	min	Summer	1.456	0.0	159.3	3400	
7200	min	Summer	1.227	0.0	167.6	4176	
8640	min	Summer	1.067	0.0	174.7	4856	
		©19	82-2017	XP Sol	utions		

CH2M Hill		Page 2
Ash House		
Falcon Road Sowton		9
Exeter EX2 7LB		Micco
Date 16/05/2018 17:45	Designed by IR065829	Desipago
File Portishead-Cat4c-1-100.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
10080	min	Summer	6 624	0 174	0.0	0.7	0.7	28.7	ОК
		Winter			0.0	0.7	0.8	31.4	0 K
		Winter			0.0	0.8	0.8	41.8	O K
60	min '	Winter	6.696	0.246	0.0	0.9	0.9	52.6	O K
120	min '	Winter	6.728	0.278	0.0	1.0	1.0	63.2	Flood Risk
180	min '	Winter	6.745	0.295	0.0	1.0	1.0	68.8	Flood Risk
240	min '	Winter	6.756	0.306	0.0	1.0	1.0	72.1	Flood Risk
360	min '	Winter	6.768	0.318	0.0	1.0	1.0	76.0	Flood Risk
480	min '	Winter	6.774	0.324	0.0	1.0	1.0	77.7	Flood Risk
600	min 1	Winter	6.776	0.326	0.0	1.0	1.0	78.2	Flood Risk
720	min '	Winter	6.775	0.325	0.0	1.0	1.0	78.0	Flood Risk
960	min '	Winter	6.772	0.322	0.0	1.0	1.0	77.3	Flood Risk
1440	min '	Winter	6.763	0.313	0.0	1.0	1.0	74.5	Flood Risk
2160	min '	Winter	6.745	0.295	0.0	1.0	1.0	68.6	Flood Risk
2880	min '	Winter	6.726	0.276	0.0	1.0	1.0	62.4	Flood Risk
4320	min '	Winter	6.692	0.242	0.0	0.9	0.9	51.1	O K
5760	min '	Winter	6.663	0.213	0.0	0.8	0.8	41.8	O K
7200	min '	Winter	6.640	0.190	0.0	0.8	0.8	34.1	O K
8640	min '	Winter	6.621	0.171	0.0	0.7	0.7	27.7	O K

Storm Event			Rain (mm/hr)	Vol		•	_	Time-Peak (mins)	
10080	min	Summer	0.948		0.0	180	. 9	5640	
15	min	Winter	101.754		0.0	32.	. 2	26	
30	min	Winter	67.708		0.0	43.	. 1	40	
60	min	Winter	43.136		0.0	55.	. 1	68	
120	min	Winter	26.651		0.0	68.	. 2	126	
180	min	Winter	19.868		0.0	76.	. 4	184	
240	min	Winter	16.054		0.0	82.	. 3	240	
360	min	Winter	11.891		0.0	91.	. 5	354	
480	min	Winter	9.596		0.0	98.	. 5	466	
600	min	Winter	8.121		0.0	104.	. 2	572	
720	min	Winter	7.083		0.0	109	. 1	672	
960	min	Winter	5.703		0.0	117.	. 1	760	
1440	min	Winter	4.198		0.0	126.	. 3	1070	
2160	min	Winter	3.085		0.0	142.	. 4	1520	
2880	min	Winter	2.477		0.0	152.	. 4	1964	
4320	min	Winter	1.816		0.0	167.	. 4	2808	
5760	min	Winter	1.456		0.0	178.	. 7	3584	
7200	min	Winter	1.227		0.0	188.	. 0	4336	
8640	min	Winter	1.067		0.0	196.	. 0	5104	
		©198	32-2017	XP	Sol	utions			

	Page 3
	9
	Micco
Designed by IR065829	Desipago
Checked by	namaye
Source Control 2017.1.2	
	Checked by

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	

10080 min Winter 6.604 0.154 0.0 0.7 0.7 22.6 O K

Storm		Rain	Flooded	Discharge	Time-Peak
	Event	(mm/hr)	Volume	Volume	(mins)
			(m³)	(m³)	
	10080 min Winter	0.948	0.0	203.0	5840

CH2M Hill		Page 4
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 16/05/2018 17:45	Designed by IR065829	Desinago
File Portishead-Cat4c-1-100.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

Rainfall Details

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.154

				(mins)				
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.051	4	8	0.051	8	12	0.051

CH2M Hill		Page 5
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 16/05/2018 17:45	Designed by IR065829	Desipago
File Portishead-Cat4c-1-100.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

Storage is Online Cover Level (m) 7.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	4.0
Membrane Percolation (mm/hr)	1000	Length (m)	86.8
Max Percolation (1/s)	96.4	Slope (1:X)	500.0
Safety Factor	2.0	Depression Storage (mm)	2
Porosity	0.95	Evaporation (mm/day)	1
Invert Level (m)	6.450	Cap Volume Depth (m)	0.300

Orifice Outflow Control

Diameter (m) 0.030 Discharge Coefficient 0.600 Invert Level (m) 6.450

2M Hill					Page 6
h House					
lcon Road Sowton					The state of the s
eter EX2 7LB					Micro
te 16/05/2018 17:45		ed by IR	065829		Drainad
le Portishead-Cat4c-1-100.SR	I				Dialila
cro Drainage	Source	Control	2017.1	. 2	
<u>E</u>	vent: 600	min Wint	<u>er</u>		
_					
7+		·			
1		L			
6	1	1			
5					
	1				
(\$ ₁) 4+		ļ			
§				1	
3+		\$			
	1				
2					
1+					
				-	
0 282 564 846	1128 1	410 16	92 1974	2256	2538
0 282 564 846 Inflow	1128 1 Time (i	410 16 mins)		2256 Outflow	2538
■ Inflow	1128 1 Time (410 16 mins)			2538
■ Inflow	1128 1 Time (410 16 mins)			2538
■ Inflow	1128 1 Time (410 160 mins)			2538
■ Inflow	1128 1 Time (410 160 mins)			2538
80 70	1128 1 Time (410 16 mins)			2538
80 70	1128 1 Time (410 16 mins)			2538
80 70 60 50	1128 1 Time (410 160 mins)			2538
80 70 60 50	1128 1 Time (410 16 mins)			2538
80 70 60 50	1128 1 Time (410 16 mins)			2538
80 70- 60- 50-	1128 1 Time (410 16 mins)			2538
80 T 70- 60- 50- 40-	1128 1 Time (410 16 mins)			2538
80 T 70- 60- 50- 40-	1128 1 Time (410 16 mins)			2538
80 70 60 - 50 40 - 30 - 30 - 30 - 30 - 30 - 30 - 30	1128 1 Time (410 16 mins)			2538
80 70 60 - 50 40 - 30 - 30 - 30 - 30 - 30 - 30 - 30	1128 1 Time (410 16 mins)			2538
80 7 70 60 - 50 - 40 - 20 - 20 - 20 - 20 - 20 - 20 - 2	1128 1 Time (410 16 mins)			2538

CH2M Hill		Page 1
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 16/05/2018 17:44	Designed by IR065829	Desipago
File Portishead-Cat4c-1-100.SRCX	Checked by	Dialiards
Micro Drainage	Source Control 2017.1.2	

Half Drain Time : 763 minutes.

	Stor		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)			Max Volume (m³)	Status
15	min	Summer	6.648	0.198	0.0	0.8	0.8	36.5	ОК
30	min	Summer	6.685	0.235	0.0	0.9	0.9	49.0	O K
60	min	Summer	6.725	0.275	0.0	1.0	1.0	62.1	Flood Risk
120	min	Summer	6.764	0.314	0.0	1.0	1.0	74.7	Flood Risk
180	min	Summer	6.786	0.336	0.0	1.1	1.1	80.9	Flood Risk
240	min	Summer	6.800	0.350	0.0	1.1	1.1	84.5	Flood Risk
360	min	Summer	6.819	0.369	0.0	1.1	1.1	88.7	Flood Risk
480	min	Summer	6.828	0.378	0.0	1.1	1.1	90.3	Flood Risk
600	min	Summer	6.829	0.379	0.0	1.1	1.1	90.6	Flood Risk
720	min	Summer	6.829	0.379	0.0	1.1	1.1	90.4	Flood Risk
960	min	Summer	6.825	0.375	0.0	1.1	1.1	89.8	Flood Risk
1440	min	Summer	6.812	0.362	0.0	1.1	1.1	87.2	Flood Risk
2160	min	Summer	6.791	0.341	0.0	1.1	1.1	82.2	Flood Risk
2880	min	Summer	6.772	0.322	0.0	1.0	1.0	77.0	Flood Risk
4320	min	Summer	6.741	0.291	0.0	1.0	1.0	67.5	Flood Risk
5760	min	Summer	6.716	0.266	0.0	0.9	0.9	59.2	Flood Risk
7200	min	Summer	6.695	0.245	0.0	0.9	0.9	52.2	O K
8640	min	Summer	6.677	0.227	0.0	0.9	0.9	46.1	O K

	Sto	rm	Rain	Flooded	Discharge	Time-Peak	
	Ever	nt	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	131.851	0.0	37.4	26	
30	min	Summer	88.566	0.0	50.4	41	
60	min	Summer	56.713	0.0	64.8	70	
120	min	Summer	35.004	0.0	80.1	128	
180	min	Summer	25.973	0.0	89.3	188	
240	min	Summer	20.877	0.0	95.7	246	
360	min	Summer	15.365	0.0	105.7	364	
480	min	Summer	12.341	0.0	113.2	482	
600	min	Summer	10.402	0.0	119.3	580	
720	min	Summer	9.042	0.0	124.4	628	
960	min	Summer	7.241	0.0	132.3	752	
1440	min	Summer	5.284	0.0	136.9	1016	
2160	min	Summer	3.848	0.0	158.8	1432	
2880	min	Summer	3.068	0.0	168.7	1848	
4320	min	Summer	2.226	0.0	183.4	2644	
5760	min	Summer	1.771	0.0	194.2	3456	
7200	min	Summer	1.483	0.0	203.2	4192	
8640	min	Summer	1.284	0.0	210.8	4936	
		©19	82-2017	XP Sol	utions		

CH2M Hill		Page 2
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 16/05/2018 17:44	Designed by IR065829	Desipodo
File Portishead-Cat4c-1-100.SRCX	Checked by	Dialiache
Micro Drainage	Source Control 2017.1.2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
			(211)	(211)	(2/5/	(1,5)	(1/5)	(211)	
10080	min :	Summer	6.660	0.210	0.0	0.8	0.8	40.8	ОК
15	min N	Winter	6.661	0.211	0.0	0.8	0.8	41.1	O K
30	min N	Winter	6.704	0.254	0.0	0.9	0.9	55.1	Flood Risk
60	min N	Winter	6.749	0.299	0.0	1.0	1.0	69.8	Flood Risk
120	min N	Winter	6.799	0.349	0.0	1.1	1.1	84.2	Flood Risk
180	min N	Winter	6.835	0.385	0.0	1.1	1.1	91.5	Flood Risk
240	min N	Winter	6.865	0.415	0.0	1.2	1.2	95.8	Flood Risk
360	min N	Winter	7.001	0.551	0.0	1.4	1.4	100.5	FLOOD
480	min N	Winter	7.003	0.553	0.0	1.4	1.4	102.3	FLOOD
600	min N	Winter	7.004	0.554	0.0	1.4	1.4	102.8	FLOOD
720	min N	Winter	7.003	0.553	0.0	1.4	1.4	102.4	FLOOD
960	min N	Winter	7.003	0.553	0.0	1.4	1.4	101.7	FLOOD
1440	min N	Winter	6.952	0.502	0.0	1.3	1.3	99.2	Flood Risk
2160	min N	Winter	6.841	0.391	0.0	1.2	1.2	92.6	Flood Risk
2880	min N	Winter	6.803	0.353	0.0	1.1	1.1	85.2	Flood Risk
4320	min V	Winter	6.753	0.303	0.0	1.0	1.0	71.2	Flood Risk
5760	min V	Winter	6.717	0.267	0.0	0.9	0.9	59.4	Flood Risk
7200	min N	Winter	6.687	0.237	0.0	0.9	0.9	49.6	O K
8640	min N	Winter	6.663	0.213	0.0	0.8	0.8	41.5	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
10080	min	Summer	1.137	0.0	217.5	5664
15	min	Winter	131.851	0.0	41.9	26
30	min	Winter	88.566	0.0	56.0	40
60	min	Winter	56.713	0.0	72.7	70
120	min	Winter	35.004	0.0	89.8	126
180	min	Winter	25.973	0.0	100.1	184
240	min	Winter	20.877	0.0	107.3	242
360	min	Winter	15.365	1.6	118.5	354
480	min	Winter	12.341	3.4	126.9	466
600	min	Winter	10.402	3.8	133.7	572
720	min	Winter	9.042	3.5	139.2	666
960	min	Winter	7.241	2.8	145.8	752
1440	min	Winter	5.284	0.0	148.1	1066
2160	min	Winter	3.848	0.0	178.0	1540
2880	min	Winter	3.068	0.0	189.1	1992
4320	min	Winter	2.226	0.0	205.6	2856
5760	min	Winter	1.771	0.0	217.8	3648
7200	min	Winter	1.483	0.0	227.8	4464
8640	min	Winter	1.284	0.0	236.5	5192
		©19	82-2017	XP Sol	utions	

CH2M Hill		Page 3
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 16/05/2018 17:44	Designed by IR065829	Desipago
File Portishead-Cat4c-1-100.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	

10080 min Winter 6.642 0.192 0.0 0.8 0.8 34.6 O K

Storm Rain Flooded Discharge Time-Peak
Event (mm/hr) Volume Volume (mins)
(m³) (m³)

10080 min Winter 1.137 0.0 244.0 5952

CH2M Hill		Page 4
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 16/05/2018 17:44	Designed by IR065829	Desinago
File Portishead-Cat4c-1-100.SRCX	Checked by	Diali larje
Micro Drainage	Source Control 2017.1.2	

Rainfall Details

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.350
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

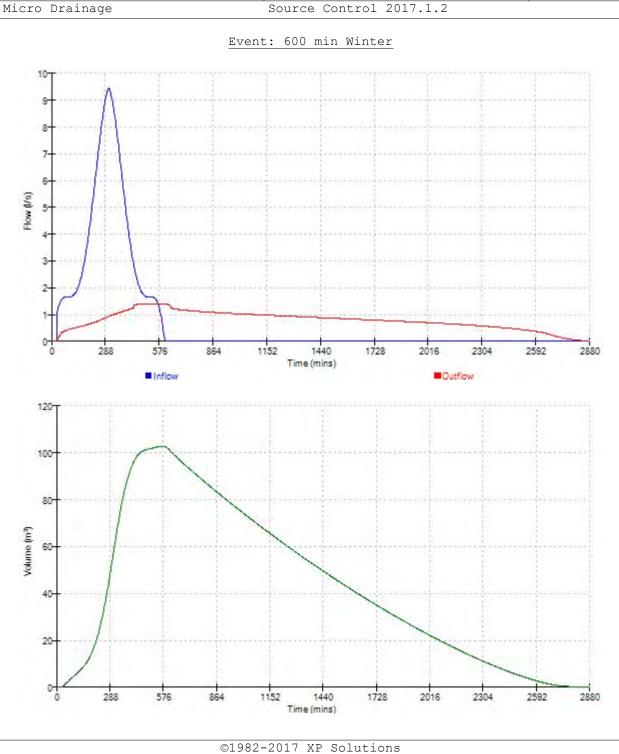
Time Area Diagram

Total Area (ha) 0.154

				(mins)				
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.051	4	8	0.051	8	12	0.051

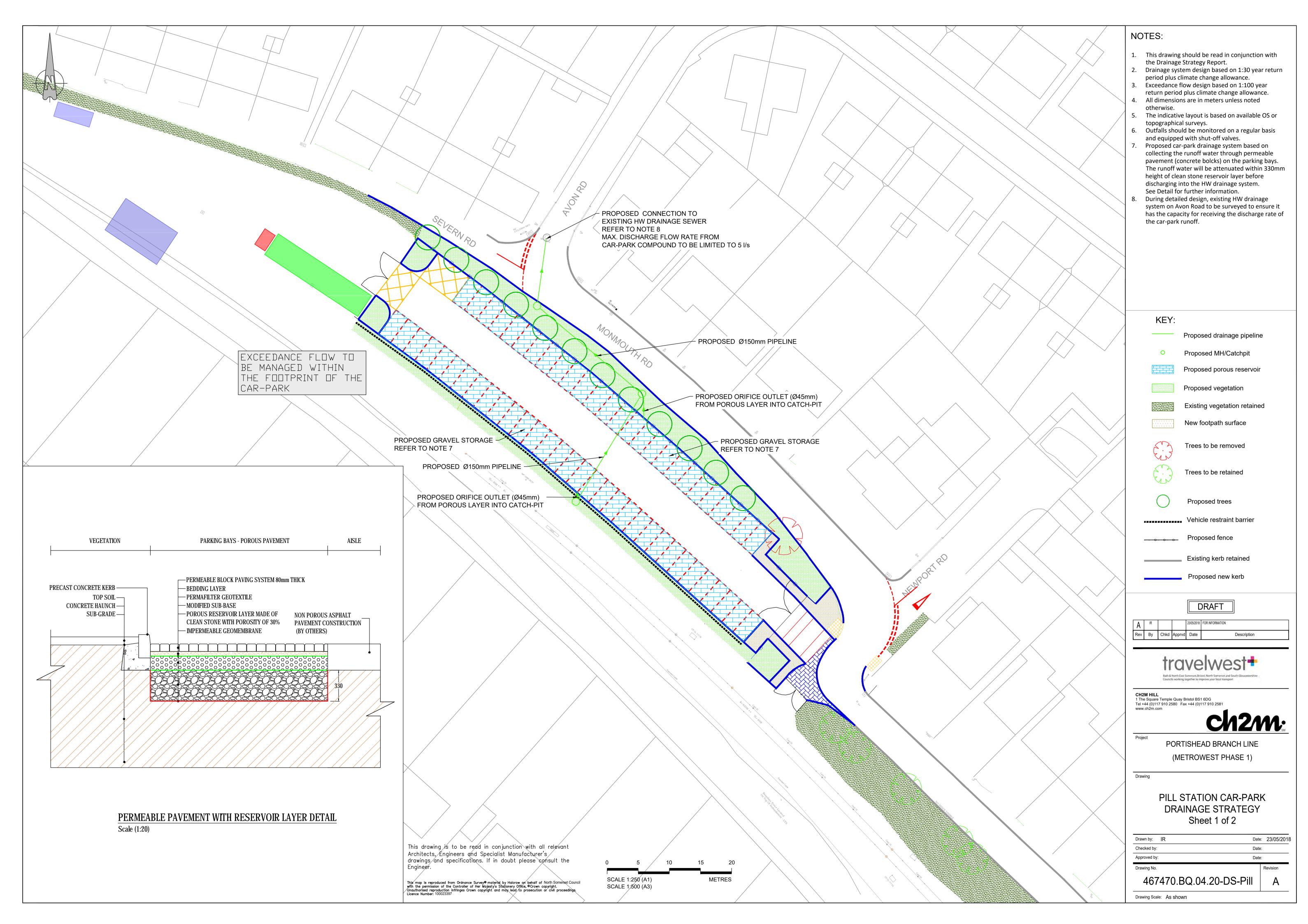
CH2M Hill		Page 5
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micro
Date 16/05/2018 17:44	Designed by IR065829	Desipago
File Portishead-Cat4c-1-100.SRCX	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

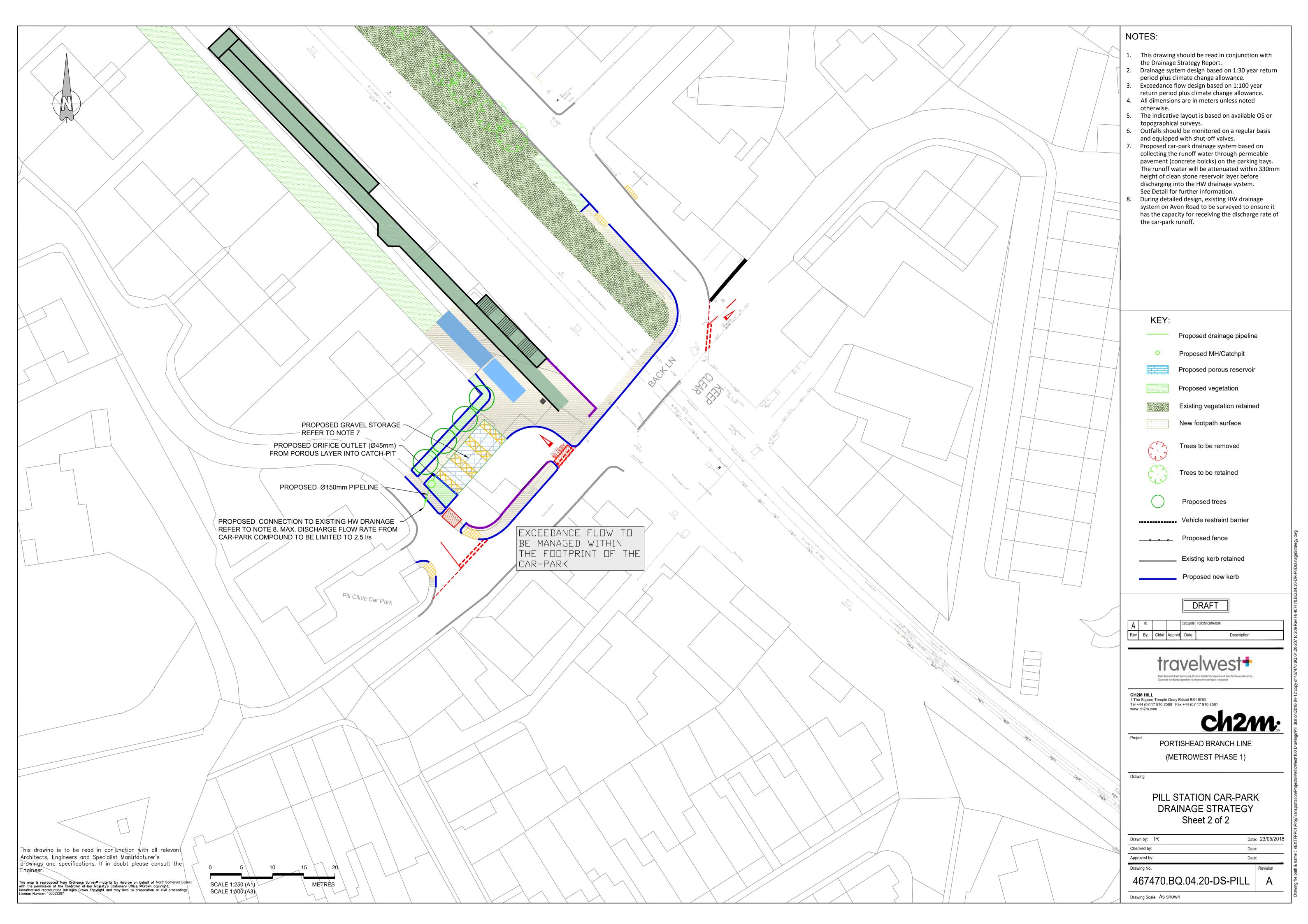
Storage is Online Cover Level (m) 7.000


Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	4.0
Membrane Percolation (mm/hr)	1000	Length (m)	86.8
Max Percolation (1/s)	96.4	Slope (1:X)	500.0
Safety Factor	2.0	Depression Storage (mm)	2
Porosity	0.95	Evaporation (mm/day)	1
Invert Level (m)	6.450	Cap Volume Depth (m)	0.300

Orifice Outflow Control


Diameter (m) 0.030 Discharge Coefficient 0.600 Invert Level (m) 6.450


CH2M Hill		Page 6
Ash House		
Falcon Road Sowton		4
Exeter EX2 7LB		Micco
Date 16/05/2018 17:44	Designed by IR065829	Desipago
File Portishead-Cat4c-1-100.SRCX	Checked by	Dialiards
Micro Drainage	Source Control 2017.1.2	

APPENDIX C

Pill Station Drainage Strategy Drawings and Calculations

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 16/04/2018 14:04	Designed by IR065829	Desipago
File 2018-04-16-Pill Station	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Half Drain Time : 95 minutes.

	Stor		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min	Summer	17.635	0.215	0.0	1.9	1.9	12.0	O K
30	min	Summer	17.675	0.255	0.0	2.0	2.0	15.6	O K
60	min	Summer	17.704	0.284	0.0	2.2	2.2	18.2	Flood Risk
120	min	Summer	17.716	0.296	0.0	2.2	2.2	19.3	Flood Risk
180	min	Summer	17.715	0.295	0.0	2.2	2.2	19.2	Flood Risk
240	min	Summer	17.709	0.289	0.0	2.2	2.2	18.7	Flood Risk
360	min	Summer	17.695	0.275	0.0	2.1	2.1	17.4	O K
480	min	Summer	17.680	0.260	0.0	2.1	2.1	16.1	O K
600	min	Summer	17.667	0.247	0.0	2.0	2.0	14.9	O K
720	min	Summer	17.654	0.234	0.0	1.9	1.9	13.7	O K
960	min	Summer	17.631	0.211	0.0	1.8	1.8	11.7	O K
1440	min	Summer	17.596	0.176	0.0	1.7	1.7	8.6	O K
2160	min	Summer	17.561	0.141	0.0	1.5	1.5	5.5	O K
2880	min	Summer	17.536	0.116	0.0	1.3	1.3	3.7	O K
4320	min	Summer	17.504	0.084	0.0	1.0	1.0	1.9	O K
5760	min	Summer	17.485	0.065	0.0	0.9	0.9	1.2	O K
7200	min	Summer	17.478	0.058	0.0	0.7	0.7	0.9	O K
8640	min	Summer	17.472	0.052	0.0	0.6	0.6	0.8	O K

	Stor				Discharge Volume (m³)		
15	min	Summer	101.754	0.0	13.7	23	
30	min	Summer	67.708	0.0	18.4	36	
60	min	Summer	43.136	0.0	23.6	62	
120	min	Summer	26.651	0.0	29.3	96	
180	min	Summer	19.868	0.0	32.8	130	
240	min	Summer	16.054	0.0	35.4	164	
360	min	Summer	11.891	0.0	39.3	234	
480	min	Summer	9.596	0.0	42.3	300	
600	min	Summer	8.121	0.0	44.7	366	
720	min	Summer	7.083	0.0	46.8	432	
960	min	Summer	5.703	0.0	50.1	558	
1440	min	Summer	4.198	0.0	55.2	802	
2160	min	Summer	3.085	0.0	60.5	1156	
2880	min	Summer	2.477	0.0	64.5	1508	
4320	min	Summer	1.816	0.0	70.3	2212	
5760	min	Summer	1.456	0.0	74.5	2936	
7200	min	Summer	1.227	0.0	77.8	3624	
8640	min	Summer	1.067	0.0	80.5	4400	
		©19	82-2017	XP Sol	Lutions		

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 16/04/2018 14:04	Designed by IR065829	Desipago
File 2018-04-16-Pill Station	Checked by	Dialilade

Source Control 2017.1.2

XP Solutions

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
10080	min 9	Summer	17.469	0 049	0.0	0.6	0.6	0.7	ОК
			17.653		0.0	1.9	1.9	13.7	O K
			17.698		0.0	2.1	2.1	17.7	0 K
			17.734		0.0	2.1	2.3		Flood Risk
			17.748		0.0	2.3	2.3		Flood Risk
180	min W	Vinter	17.744	0.324	0.0	2.3	2.3	21.8	Flood Risk
240	min W	Vinter	17.735	0.315	0.0	2.3	2.3	21.0	Flood Risk
360	min W	Vinter	17.713	0.293	0.0	2.2	2.2	19.0	Flood Risk
480	min W	Vinter	17.690	0.270	0.0	2.1	2.1	17.0	0 K
600	min W	Vinter	17.670	0.250	0.0	2.0	2.0	15.2	O K
720	min W	Vinter	17.651	0.231	0.0	1.9	1.9	13.5	O K
960	min W	Vinter	17.620	0.200	0.0	1.8	1.8	10.7	O K
1440	min W	Vinter	17.575	0.155	0.0	1.5	1.5	6.7	O K
2160	min W	Vinter	17.532	0.112	0.0	1.3	1.3	3.5	0 K
2880	min W	Vinter	17.505	0.085	0.0	1.1	1.1	2.0	O K
4320	min W	Vinter	17.480	0.060	0.0	0.8	0.8	1.0	O K
5760	min W	Vinter	17.472	0.052	0.0	0.6	0.6	0.8	0 K
7200	min W	Vinter	17.466	0.046	0.0	0.5	0.5	0.6	ОК
8640	min W	Vinter	17.463	0.043	0.0	0.5	0.5	0.5	O K

	Storm Event		Rain (mm/hr)		е	Discharge Volume (m³)	Time-Peak (mins)
10080	min	Summer	0.948	0.	0	82.8	5104
15	min	Winter	101.754	0.	0	15.4	24
30	min	Winter	67.708	0.	0	20.7	36
60	min	Winter	43.136	0.	0	26.5	62
120	min	Winter	26.651	0.	0	32.9	102
180	min	Winter	19.868	0.	0	36.8	140
240	min	Winter	16.054	0.	0	39.7	178
360	min	Winter	11.891	0.	0	44.1	252
480	min	Winter	9.596	0.	0	47.5	322
600	min	Winter	8.121	0.	0	50.2	390
720	min	Winter	7.083	0.	0	52.5	456
960	min	Winter	5.703	0.	0	56.3	586
1440	min	Winter	4.198	0.	0	62.0	828
2160	min	Winter	3.085	0.	0	68.0	1172
2880	min	Winter	2.477	0.	0	72.5	1508
4320	min	Winter	1.816	0.	0	79.1	2208
5760	min	Winter	1.456	0.	0	83.9	2936
7200	min	Winter	1.227	0.	0	87.7	3672
8640	min	Winter	1.067	0.		90.9	4352

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 16/04/2018 14:04	Designed by IR065829	Designation
File 2018-04-16-Pill Station	Checked by	Dialilacie
XP Solutions	Source Control 2017.1.2	

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level (m)	Depth (m)	Infiltration (1/s)	Control (1/s)	Σ Outflow (1/s)	Volume (m³)	

10080 min Winter 17.460 0.040 0.0 0.4 0.4 0.4 0 K

Storm	Rain	Flooded	Discharge	Time-Peak
Event	(mm/hr)	Volume (m³)	Volume (m³)	(mins)
10080 min Winter	0 948	0 0	93 6	5048

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 16/04/2018 14:04	Designed by IR065829	Desipago
File 2018-04-16-Pill Station	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Rainfall Details

 Return
 Period (years)
 Tend (years)
 Ten

Time Area Diagram

Total Area (ha) 0.075

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.025	4	8	0.025	8	12	0.025

CH2M		Page 5
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 16/04/2018 14:04	Designed by IR065829	Desipago
File 2018-04-16-Pill Station	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Storage is Online Cover Level (m) 18.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	9.3
Membrane Percolation (mm/hr)	1000	Length (m)	32.0
Max Percolation (1/s)	82.7	Slope (1:X)	200.0
Safety Factor	1.0	Depression Storage (mm)	2
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	17.420	Cap Volume Depth (m)	0.330

Orifice Outflow Control

Diameter (m) 0.045 Discharge Coefficient 0.600 Invert Level (m) 17.420

CH2M					Page 6
Ash House					
Falcon Road					Ty
Exeter EX2 7LB					_ Micro
Date 16/04/2018 14:04	Designed by	y IR06582	29		Micro Drainage
File 2018-04-16-Pill Station					Drainage
KP Solutions	Source Cont	trol 201	7.1.2		
12	ent: 120 min N	Winter			
Howe(6/s)					
0 46 92 138	184 230	276	322	368	414
24 21 -					
18 15 15 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	184 230 Time (mins)	276	322	368	414
(E) 15- 9- 6- 3-		276	322	368	414
15 12 12 9 9 6 3 138		276	322	368	414
15 12 12 9 0 0 46 92 138		276	322	368	414
0.35 0.30 0.25		276	322	368	414
0.35 0.30 0.25		276	322	368	414
0.35 0.30 0.25		276	322	368	414
15 12 12 9 0 0 46 92 138		276	322	368	414
0.35 0.30 0.25 0.15 0.10		276	322	368	414
0.35 0.30 0.25 0.20 (E) 0.20 (E) 0.15 0.10		276	322	368	414
0.35 0.30 0.25 (E) 0.20 0.15 0.10 0.05	Time (mins)				
0.35 0.30 0.25 (E) 0.20 0.15 0.10 0.05	Time (mins)	276	322	368	414

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 16/04/2018 14:06	Designed by IR065829	Desinago
File 2018-04-16-Pill Station	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Half Drain Time : 125 minutes.

	Stor		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min :	Summer	17.662	0.242	0.0	2.0	2.0	16.0	O K
30	min :	Summer	17.708	0.288	0.0	2.2	2.2	21.0	Flood Risk
60	min :	Summer	17.745	0.325	0.0	2.3	2.3	25.1	Flood Risk
120	min :	Summer	17.763	0.343	0.0	2.4	2.4	27.0	Flood Risk
180	min :	Summer	17.763	0.343	0.0	2.4	2.4	27.0	Flood Risk
240	min :	Summer	17.757	0.337	0.0	2.4	2.4	26.4	Flood Risk
360	min :	Summer	17.744	0.324	0.0	2.3	2.3	25.0	Flood Risk
480	min :	Summer	17.729	0.309	0.0	2.3	2.3	23.3	Flood Risk
600	min :	Summer	17.715	0.295	0.0	2.2	2.2	21.8	Flood Risk
720	min :	Summer	17.702	0.282	0.0	2.2	2.2	20.3	Flood Risk
960	min :	Summer	17.678	0.258	0.0	2.1	2.1	17.7	O K
1440	min :	Summer	17.639	0.219	0.0	1.9	1.9	13.4	O K
2160	min :	Summer	17.598	0.178	0.0	1.7	1.7	9.0	O K
2880	min :	Summer	17.568	0.148	0.0	1.5	1.5	6.2	O K
4320	min :	Summer	17.527	0.107	0.0	1.2	1.2	3.3	O K
5760	min :	Summer	17.502	0.082	0.0	1.0	1.0	1.9	O K
7200	min :	Summer	17.487	0.067	0.0	0.9	0.9	1.3	O K
8640	min :	Summer	17.479	0.059	0.0	0.8	0.8	1.0	O K

	Storm Event		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	131.851	0.0	17.8	24	
30	min	Summer	88.566	0.0	24.1	37	
60	min	Summer	56.713	0.0	31.1	64	
120	min	Summer	35.004	0.0	38.6	104	
180	min	Summer	25.973	0.0	43.0	136	
240	min	Summer	20.877	0.0	46.1	170	
360	min	Summer	15.365	0.0	50.8	240	
480	min	Summer	12.341	0.0	54.4	308	
600	min	Summer	10.402	0.0	57.3	376	
720	min	Summer	9.042	0.0	59.7	442	
960	min	Summer	7.241	0.0	63.7	570	
1440	min	Summer	5.284	0.0	69.5	820	
2160	min	Summer	3.848	0.0	75.5	1176	
2880	min	Summer	3.068	0.0	79.9	1532	
4320	min	Summer	2.226	0.0	86.1	2244	
5760	min	Summer	1.771	0.0	90.5	2944	
7200	min	Summer	1.483	0.0	93.9	3672	
8640	min	Summer	1.284	0.0	96.7	4400	
		©19	82-2017	XP Sol	Lutions		

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 16/04/2018 14:06	Designed by IR065829	Desinago
File 2018-04-16-Pill Station	Checked by	Dialiarie
XP Solutions	Source Control 2017.1.2	•

	Storm Event		Max	Max	Max	Max		Max	Max	Status
			Level	Depth	${\tt Infiltration}$	Control	Σ	Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)		(1/s)	(m³)	
10080	min S	Summer	17.475	0 055	0.0	0.7		0.7	0.8	ОК
			17.681		0.0	2.1		2.1	18.1	0 K
			17.734		0.0	2.3		2.3		Flood Risk
			17.780		0.0	2.5		2.5		Flood Risk
			17.807		0.0	2.6		2.6		Flood Risk
			17.806		0.0	2.5		2.5		Flood Risk
240	min V	Winter	17.795	0.375	0.0	2.5		2.5	30.1	Flood Risk
360	min V	Winter	17.771	0.351	0.0	2.4		2.4	27.8	Flood Risk
480	min V	Winter	17.748	0.328	0.0	2.3		2.3	25.4	Flood Risk
600	min V	Winter	17.727	0.307	0.0	2.3		2.3	23.1	Flood Risk
720	min V	Winter	17.707	0.287	0.0	2.2		2.2	20.9	Flood Risk
960	min V	Winter	17.672	0.252	0.0	2.0		2.0	17.1	O K
1440	min V	Winter	17.620	0.200	0.0	1.8		1.8	11.4	O K
2160	min V	Winter	17.568	0.148	0.0	1.5		1.5	6.3	O K
2880	min V	Winter	17.533	0.113	0.0	1.3		1.3	3.7	O K
4320	min V	Winter	17.494	0.074	0.0	1.0		1.0	1.6	O K
5760	min V	Winter	17.479	0.059	0.0	0.8		0.8	1.0	O K
7200	min V	Winter	17.473	0.053	0.0	0.7		0.7	0.8	O K
8640	min V	Winter	17.468	0.048	0.0	0.6		0.6	0.6	O K

	Storm Event		Rain (mm/hr)		Discharge Volume (m³)		
10080	min	Summer	1.137	0.0	99.0	5048	
15	min	Winter	131.851	0.0	20.0	24	
30	min	Winter	88.566	0.0	27.1	37	
60	min	Winter	56.713	0.0	34.9	64	
120	min	Winter	35.004	0.0	43.3	114	
180	min	Winter	25.973	0.0	48.2	144	
240	min	Winter	20.877	0.0	51.7	184	
360	min	Winter	15.365	0.0	57.1	258	
480	min	Winter	12.341	0.0	61.1	332	
600	min	Winter	10.402	0.0	64.3	402	
720	min	Winter	9.042	0.0	67.1	470	
960	min	Winter	7.241	0.0	71.5	604	
1440	min	Winter	5.284	0.0	78.1	854	
2160	min	Winter	3.848	0.0	84.9	1200	
2880	min	Winter	3.068	0.0	89.9	1536	
4320	min	Winter	2.226	0.0	97.0	2212	
5760	min	Winter	1.771	0.0	102.0	2864	
7200	min	Winter	1.483	0.0	106.0	3648	
8640	min	Winter	1.284		109.3	4320	

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 16/04/2018 14:06	Designed by IR065829	Desipago
File 2018-04-16-Pill Station	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	•

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth	Infiltration	Control	$\boldsymbol{\Sigma}$ Outflow	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	

10080 min Winter 17.464 0.044 0.0 0.5 0.5 0.6 O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Event	(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
	10080 min Winter	1.137	0.0	112.0	4992	

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 16/04/2018 14:06	Designed by IR065829	Desipago
File 2018-04-16-Pill Station	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Rainfall Details

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.350
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.075

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area	
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)	
0	4	0.025	4	8	0.025	8	12	0.025	

CH2M		Page 5
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 16/04/2018 14:06	Designed by IR065829	Desinage
File 2018-04-16-Pill Station	Checked by	Dialilacie
XP Solutions	Source Control 2017.1.2	

Storage is Online Cover Level (m) 18.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr) 0.00000 Width (m) 9.5

Membrane Percolation (mm/hr) 1000 Length (m) 38.5

Max Percolation (l/s) 101.6 Slope (1:X) 200.0

Safety Factor 1.0 Depression Storage (mm) 2

Porosity 0.30 Evaporation (mm/day) 3

Invert Level (m) 17.420 Cap Volume Depth (m) 0.330

Orifice Outflow Control

Diameter (m) 0.045 Discharge Coefficient 0.600 Invert Level (m) 17.420

Ash House Falcon Road Exeter EX2 7bB Date 16/04/2018 14:06 Designed by IR065829 Dialinage Wicro Drainage Event: 120 min Winter Event: 120 min Winter Event: 120 min Winter Time (mins) Designed by IR065829 Drainage Drainage Nicro	CH2M		Page 6
Exeter EX2 7LB Date 16/04/2018 14:06 Pile 2018-04-16-Pill Station Checked by XP Solutions Source Control 2017.1.2 Event: 120 min Winter Event: 120 min Winter Time (mins) 32 25 26 20 20 20 20 20 20 20 20 20 20 20 20 20			
Designed by IR065829 Checked by C			~
Event: 120 min Winter 10			Micro
Event: 120 min Winter 120 min Winter			Drainago
Event: 120 min Winter 16		_	Drainage
16 14 12 10 10 162 216 270 324 378 432 486 10 10 10 162 216 270 324 378 432 486 10 10 10 10 10 10 10 10 10 10 10 10 10	<pre> Solutions Soluti</pre>	Source Control 2017.1.2	
32	16 _T	ent: 120 min Winter	
28 24 20 20 16 16 216 270 324 378 432 486 0.40 0.35 0.30 0.25 0.20 20 0.05 0.	8 8 4 4 4 2 0 0 54 108 162	Time (mins)	2 486
24 20 10 10 10 10 10 10 10 10 10 1			
20 16 10 10 10 10 10 10 10 10 10 10			
8 4 4 0 0 54 108 162 216 270 324 378 432 486 Time (mins) 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0 54 108 162 216 270 324 378 432 486			
8 4 4 0 0 54 108 162 216 270 324 378 432 486 Time (mins) 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0 54 108 162 216 270 324 378 432 486	£ 20		
8 4 4 0 0 54 108 162 216 270 324 378 432 486 Time (mins) 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0 54 108 162 216 270 324 378 432 486	<u>e</u> 16		
8 4 4 0 0 54 108 162 216 270 324 378 432 486 Time (mins) 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 0 54 108 162 216 270 324 378 432 486	§ 12-		
0 54 108 162 216 270 324 378 432 486 0.40 0.35 0.30 0.25 0.00 0.15 0.10 0.05 0.00 0 54 108 162 216 270 324 378 432 486			
0 54 108 162 216 270 324 378 432 486 0.40 0.35 0.30 0.25 0.00 0.15 0.10 0.05 0.00 0 54 108 162 216 270 324 378 432 486	4-		
0 54 108 162 216 270 324 378 432 486 0.40 0.35 0.30 0.25 0.00 0.15 0.10 0.05 0.05 0.00 0.54 108 162 216 270 324 378 432 486			
0.40 0.35 0.25 0.15 0.10 0.05 0.00 0.54 108 162 216 270 324 378 432 486	0 54 108 162		2 486
0.35 0.30 0.25 0.00 0.15 0.10 0.00 0.54 108 162 216 270 324 378 432 486		Time (mins)	
0.35 0.30 0.25 0.05 0.15 0.00 0.15 0.00 0.54 108 162 216 270 324 378 432 486	0.40-		
0.30 0.25 0.05 0.15 0.10 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00			
0.25 0.00 0.15 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05			
E 0.20 0.15 0.10 0.05 0.00 0 54 108 162 216 270 324 378 432 486	0.30		
0.10 0.05 0.00 0 54 108 162 216 270 324 378 432 486	€ 0.25		
0.10 0.05 0.00 0 54 108 162 216 270 324 378 432 486	€ 0.20+		
0.10 0.05 0.00 0 54 108 162 216 270 324 378 432 486	₫ 0.15		
0.05 0.00 0 54 108 162 216 270 324 378 432 486			
0.00 0 54 108 162 216 270 324 378 432 486			
0.00			
Time (mins)	0.001	216 270 324 378 43	2 486

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 16/04/2018 14:08	Designed by IR065829	Desipago
File 2018-04-16-Pill Station	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Half Drain Time : 100 minutes.

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event		Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
1.5	. ,	~	17 605	0 005	0.0	1 0	1 0	11 0	0 77
			17.625		0.0	1.8	1.8	11.9	0 K
			17.658		0.0	2.0	2.0	15.5	O K
60	min S	Summer	17.683	0.263	0.0	2.1	2.1	18.3	O K
120	min S	Summer	17.693	0.273	0.0	2.1	2.1	19.4	O K
180	min S	Summer	17.693	0.273	0.0	2.1	2.1	19.3	O K
240	min S	Summer	17.688	0.268	0.0	2.1	2.1	18.8	O K
360	min S	Summer	17.677	0.257	0.0	2.0	2.0	17.6	ОК
480	min S	Summer	17.665	0.245	0.0	2.0	2.0	16.3	O K
600	min S	Summer	17.654	0.234	0.0	1.9	1.9	15.1	ОК
720	min S	Summer	17.643	0.223	0.0	1.9	1.9	13.9	O K
960	min S	Summer	17.624	0.204	0.0	1.8	1.8	11.9	O K
1440	min S	Summer	17.594	0.174	0.0	1.6	1.6	8.7	O K
2160	min S	Summer	17.560	0.140	0.0	1.4	1.4	5.6	O K
2880	min S	Summer	17.535	0.115	0.0	1.3	1.3	3.8	O K
4320	min S	Summer	17.503	0.083	0.0	1.0	1.0	2.0	ОК
5760	min S	Summer	17.485	0.065	0.0	0.9	0.9	1.2	ОК
7200	min S	Summer	17.478	0.058	0.0	0.7	0.7	0.9	O K
			17.472		0.0	0.6	0.6	0.8	O K

Storm		Rain	Flooded	Discharge	Time-Peak					
Event		(mm/hr)	Volume	Volume	(mins)					
			(m³)	(m³)						
15	min	Summer	101.754	0.0	13.6	24				
30	min	Summer	67.708	0.0	18.3	36				
60	min	Summer	43.136	0.0	23.5	62				
120	min	Summer	26.651	0.0	29.2	98				
180	min	Summer	19.868	0.0	32.7	132				
240	min	Summer	16.054	0.0	35.2	166				
360	min	Summer	11.891	0.0	39.1	234				
480	min	Summer	9.596	0.0	42.1	302				
600	min	Summer	8.121	0.0	44.5	368				
720	min	Summer	7.083	0.0	46.5	434				
960	min	Summer	5.703	0.0	49.9	560				
1440	min	Summer	4.198	0.0	54.8	802				
2160	min	Summer	3.085	0.0	60.1	1156				
2880	min	Summer	2.477	0.0	64.0	1508				
4320	min	Summer	1.816	0.0	69.5	2212				
5760	min	Summer	1.456	0.0	73.5	2936				
7200	min	Summer	1.227	0.0	76.6	3672				
8640 min Summer		1.067	0.0	79.1	4312					
	©1982-2017 XP Solutions									

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 16/04/2018 14:08	Designed by IR065829	Desipago
File 2018-04-16-Pill Station	Checked by	Dialilade

Source Control 2017.1.2

XP Solutions

Storm		Max	Max	Max	Max		Max	Max	Status	
	Event		Level	Depth	${\tt Infiltration}$	Control	Σ	Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)		(1/s)	(m³)	
10080	min S	Summer	17.468	0 048	0.0	0.6		0.6	0.7	ОК
			17.640		0.0	1.9		1.9	13.6	O K
			17.677		0.0	2.0		2.0	17.7	O K
			17.707		0.0	2.2		2.2		Flood Risk
			17.719		0.0	2.2		2.2		Flood Risk
			17.717		0.0	2.2		2.2		Flood Risk
240	min V	Winter	17.710	0.290	0.0	2.2		2.2	21.3	Flood Risk
360	min V	Winter	17.692	0.272	0.0	2.1		2.1	19.3	ОК
480	min V	Winter	17.674	0.254	0.0	2.0		2.0	17.3	ОК
600	min V	Winter	17.657	0.237	0.0	2.0		2.0	15.5	O K
720	min V	Winter	17.642	0.222	0.0	1.9		1.9	13.7	O K
960	min V	Winter	17.615	0.195	0.0	1.8		1.8	10.8	O K
1440	min V	Winter	17.574	0.154	0.0	1.5		1.5	6.7	O K
2160	min V	Winter	17.531	0.111	0.0	1.3		1.3	3.5	O K
2880	min V	Winter	17.504	0.084	0.0	1.1		1.1	2.0	O K
4320	min V	Winter	17.480	0.060	0.0	0.8		0.8	1.0	O K
5760	min V	Winter	17.472	0.052	0.0	0.6		0.6	0.8	O K
7200	min V	Winter	17.466	0.046	0.0	0.5		0.5	0.6	O K
8640	min V	Winter	17.462	0.042	0.0	0.5		0.5	0.5	O K

Storm Event		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)		
10080	min	Summer	0.948	0.0	81.2	5008	
15	min	Winter	101.754	0.0	15.3	24	
30	min	Winter	67.708	0.0	20.6	36	
60	min	Winter	43.136	0.0	26.4	62	
120	min	Winter	26.651	0.0	32.8	104	
180	min	Winter	19.868	0.0	36.7	140	
240	min	Winter	16.054	0.0	39.5	180	
360	min	Winter	11.891	0.0	43.9	254	
480	min	Winter	9.596	0.0	47.3	324	
600	min	Winter	8.121	0.0	50.0	392	
720	min	Winter	7.083	0.0	52.3	460	
960	min	Winter	5.703	0.0	56.0	588	
1440	min	Winter	4.198	0.0	61.6	828	
2160	min	Winter	3.085	0.0	67.6	1172	
2880	min	Winter	2.477	0.0	72.0	1508	
4320	min	Winter	1.816	0.0	78.4	2204	
5760	min	Winter	1.456	0.0	83.0	2912	
7200	min	Winter	1.227	0.0	86.6	3600	
8640	min	Winter	1.067	0.0	89.6	4400	
		©198	32-2017	XP Sol	lutions		

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 16/04/2018 14:08	Designed by IR065829	Designation
File 2018-04-16-Pill Station	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level	Depth	${\tt Infiltration}$	Control	$\Sigma \ \text{Outflow}$	Volume	
	(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
10080 min Winter	17.459	0.039	0.0	0.4	0.4	0.4	ОК

Storm Rain Flooded Discharge Time-Peak
Event (mm/hr) Volume Volume (mins)
(m³) (m³)

10080 min Winter 0.948 0.0 92.1 5136

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 16/04/2018 14:08	Designed by IR065829	Desipago
File 2018-04-16-Pill Station	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Rainfall Details

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.075

				(mins)				
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.025	4	8	0.025	8	12	0.025

CH2M		Page 5
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 16/04/2018 14:08	Designed by IR065829	Desinago
File 2018-04-16-Pill Station	Checked by	Dialilacie
XP Solutions	Source Control 2017.1.2	

Storage is Online Cover Level (m) 18.000

Porous Car Park Structure

Infiltration Coefficient Base (m/hr)	0.00000	Width (m)	9.5
Membrane Percolation (mm/hr)	1000	Length (m)	38.5
Max Percolation $(1/s)$	101.6	Slope (1:X)	200.0
Safety Factor	1.0	Depression Storage (mm)	2
Porosity	0.30	Evaporation (mm/day)	3
Invert Level (m)	17.420	Cap Volume Depth (m)	0.330

Orifice Outflow Control

Diameter (m) 0.045 Discharge Coefficient 0.600 Invert Level (m) 17.420

CH2M		Page 6
Ash House		,
Falcon Road		~
Exeter EX2 7LB		Micro
Date 16/04/2018 14:08	Designed by IR065829	Micro Drainago
File 2018-04-16-Pill Station .	_	Didiridge
XP Solutions	Source Control 2017.1.2	
12 _T	vent: 120 min Winter	
10- 8- 8- 6- 0H 4- 2-		
0 48 96 144	400 400 400	204 402
0 48 96 144	192 240 288 336 Time (mins)	384 432
24 21- 18- 15- 12- 9- 6- 3- 0 48 96 144	192 240 288 336 Time (mins)	384 432
0.30 _T		
0.27		
0.24	~	****
0.21		
€ 0.18+		and a second second
(E 0.15—		
0.09		
0.06		
0.03		
000		1
0 48 96 144	192 240 288 336 Time (mins)	384 432

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 16/04/2018 14:10	Designed by IR065829	Desipage
File 2018-04-16-Pill Station	Checked by	Dialilage
XP Solutions	Source Control 2017.1.2	
	·	

Half Drain Time : 125 minutes.

	Storm		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Σ	Max Outflow (1/s)	Max Volume (m³)	Status
15	min S	Summer	17.662	0.242	0.0	2.0		2.0	16.0	O K
30	min S	Summer	17.708	0.288	0.0	2.2		2.2	21.0	Flood Risk
60	min S	Summer	17.745	0.325	0.0	2.3		2.3	25.1	Flood Risk
120	min S	Summer	17.763	0.343	0.0	2.4		2.4	27.0	Flood Risk
180	min S	Summer	17.763	0.343	0.0	2.4		2.4	27.0	Flood Risk
240	min S	Summer	17.757	0.337	0.0	2.4		2.4	26.4	Flood Risk
360	min S	Summer	17.744	0.324	0.0	2.3		2.3	25.0	Flood Risk
480	min S	Summer	17.729	0.309	0.0	2.3		2.3	23.3	Flood Risk
600	min S	Summer	17.715	0.295	0.0	2.2		2.2	21.8	Flood Risk
720	min S	Summer	17.702	0.282	0.0	2.2		2.2	20.3	Flood Risk
960	min S	Summer	17.678	0.258	0.0	2.1		2.1	17.7	O K
1440	min S	Summer	17.639	0.219	0.0	1.9		1.9	13.4	O K
2160	min S	Summer	17.598	0.178	0.0	1.7		1.7	9.0	O K
2880	min S	Summer	17.568	0.148	0.0	1.5		1.5	6.2	0 K
4320	min S	Summer	17.527	0.107	0.0	1.2		1.2	3.3	0 K
5760	min S	Summer	17.502	0.082	0.0	1.0		1.0	1.9	O K
7200	min S	Summer	17.487	0.067	0.0	0.9		0.9	1.3	O K
8640	min S	Summer	17.479	0.059	0.0	0.8		0.8	1.0	O K

	Storm Event		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	131.851	0.0	17.8	24	
30	min	Summer	88.566	0.0	24.1	37	
60	min	Summer	56.713	0.0	31.1	64	
120	min	Summer	35.004	0.0	38.6	104	
180	min	Summer	25.973	0.0	43.0	136	
240	min	Summer	20.877	0.0	46.1	170	
360	min	Summer	15.365	0.0	50.8	240	
480	min	Summer	12.341	0.0	54.4	308	
600	min	Summer	10.402	0.0	57.3	376	
720	min	Summer	9.042	0.0	59.7	442	
960	min	Summer	7.241	0.0	63.7	570	
1440	min	Summer	5.284	0.0	69.5	820	
2160	min	Summer	3.848	0.0	75.5	1176	
2880	min	Summer	3.068	0.0	79.9	1532	
4320	min	Summer	2.226	0.0	86.1	2244	
5760	min	Summer	1.771	0.0	90.5	2944	
7200	min	Summer	1.483	0.0	93.9	3672	
8640	min	Summer	1.284	0.0	96.7	4400	
		©19	82-2017	XP Sol	utions		

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 16/04/2018 14:10	Designed by IR065829	Designation
File 2018-04-16-Pill Station	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

	Storm	Max	Max	Max	Max	Max	Max	Status
	Event	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
10000		17 475	0 055	0.0	0.7	0.7	0 0	0.17
	min Summer			0.0	0.7	0.7	0.8	O K
	min Winter			0.0	2.1	2.1		O K
30	min Winter	17.734	0.314	0.0	2.3	2.3	23.9	Flood Risk
60	min Winter	17.780	0.360	0.0	2.5	2.5	28.7	Flood Risk
120	min Winter	17.807	0.387	0.0	2.6	2.6	31.1	Flood Risk
180	min Winter	17.806	0.386	0.0	2.5	2.5	30.9	Flood Risk
240	min Winter	17.795	0.375	0.0	2.5	2.5	30.1	Flood Risk
360	min Winter	17.771	0.351	0.0	2.4	2.4	27.8	Flood Risk
480	min Winter	17.748	0.328	0.0	2.3	2.3	25.4	Flood Risk
600	min Winter	17.727	0.307	0.0	2.3	2.3	23.1	Flood Risk
720	min Winter	17.707	0.287	0.0	2.2	2.2	20.9	Flood Risk
960	min Winter	17.672	0.252	0.0	2.0	2.0	17.1	O K
1440	min Winter	17.620	0.200	0.0	1.8	1.8	11.4	0 K
2160	min Winter	17.568	0.148	0.0	1.5	1.5	6.3	O K
2880	min Winter	17.533	0.113	0.0	1.3	1.3	3.7	O K
4320	min Winter	17.494	0.074	0.0	1.0	1.0	1.6	O K
5760	min Winter	17.479	0.059	0.0	0.8	0.8	1.0	O K
7200	min Winter	17.473	0.053	0.0	0.7	0.7	0.8	O K
8640	min Winter	17.468	0.048	0.0	0.6	0.6	0.6	O K

							3 -	_		
	Even	t	(mm/hr)			Volu (m³		(mi	ns)	
10080	min	Summer	1.137		0.0	9	99.0		5048	
15	min	Winter	131.851		0.0	2	20.0		24	
30	min	Winter	88.566		0.0	2	27.1		37	
60	min	Winter	56.713		0.0	3	34.9		64	
120	min	Winter	35.004		0.0	4	13.3		114	
180	min	Winter	25.973		0.0	4	18.2		144	
240	min	Winter	20.877		0.0	ŗ	51.7		184	
360	min	Winter	15.365		0.0	Į.	57.1		258	
480	min	Winter	12.341		0.0	(51.1		332	
600	min	Winter	10.402		0.0	(54.3		402	
720	min	Winter	9.042		0.0	(57.1		470	
960	min	Winter	7.241		0.0	7	71.5		604	
1440	min	Winter	5.284		0.0	-	78.1		854	
2160	min	Winter	3.848		0.0	8	34.9		1200	
2880	min	Winter	3.068		0.0	8	39.9		1536	
4320	min	Winter	2.226		0.0	9	97.0		2212	
5760	min	Winter	1.771		0.0	10	02.0		2864	
			1.483			10			3648	
8640	min	Winter	1.284		0.0	10	9.3		4320	
		©198	82-2017	XP	Soli	ıtion	s			

Storm Rain Flooded Discharge Time-Peak

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 16/04/2018 14:10	Designed by IR065829	Desipago
File 2018-04-16-Pill Station	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Storm	Max	Max	Max	Max	Max	Max	Status
Event	Level (m)	Depth (m)	Infiltration (1/s)	Control (1/s)	Σ Outflow (1/s)	Volume (m³)	

10080 min Winter 17.464 0.044 0.0 0.5 0.5 0.6 O K

Storm	Rain	Flooded	Discharge	Time-Peak
Event	(mm/hr)	Volume (m³)	Volume (m³)	(mins)
10080 min Winter	1 137	0 0	112 0	4992

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 16/04/2018 14:10	Designed by IR065829	Desipago
File 2018-04-16-Pill Station	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Rainfall Details

 Return
 Period (years)
 100
 Cv (Summer)
 0.750

 Region
 England and Wales
 Cv (Winter)
 0.840

 M5-60 (mm)
 20.000
 Shortest Storm (mins)
 15

 Ratio R
 0.350
 Longest Storm (mins)
 10080

 Summer Storms
 Yes
 Climate Change %
 +40

Time Area Diagram

Total Area (ha) 0.075

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.025	4	8	0.025	8	12	0.025

CH2M		Page 5
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 16/04/2018 14:10	Designed by IR065829	Desipago
File 2018-04-16-Pill Station	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Storage is Online Cover Level (m) 18.000

Porous Car Park Structure

9.5	Width (m)	0.00000	Infiltration Coefficient Base (m/hr)
38.5	Length (m)	1000	Membrane Percolation (mm/hr)
200.0	Slope (1:X)	101.6	Max Percolation $(1/s)$
2	Depression Storage (mm)	1.0	Safety Factor
3	Evaporation (mm/day)	0.30	Porosity
0.330	Cap Volume Depth (m)	17.420	Invert Level (m)

Orifice Outflow Control

Diameter (m) 0.045 Discharge Coefficient 0.600 Invert Level (m) 17.420

CH2M		Page 6
Ash House		,
Falcon Road		~
Exeter EX2 7LB		Micro
Date 16/04/2018 14:10	Designed by IR065829	Micro Drainage
File 2018-04-16-Pill Station .	_	Didiridge
XP Solutions	Source Control 2017.1.2	
16T	ent: 120 min Winter	
12- 10- 8- 8- 4- 2- 0 54 108 162	216 270 324 378 432 Time (mins)	486
28		
24		
20 16 16 12 12 12 12 12 12 12 12 12 12 12 12 12		
£ 16+		
§ 12-		
8-		
4+		
0 54 108 162	216 270 324 378 432	486
	Time (mins)	
0.40-		
0.35		
0.30	A STATE OF THE PARTY OF THE PAR	
€ 0.25		************
£ 0.20+		
夏 0.20 安 0.15		
0.10		
0.05		
0.00	216 270 324 378 432	486
0 54 108 162		
0.00 54 108 162	Time (mins)	
0 54 108 162		

APPENDIX D

Haul Roads Drainage Strategy Drawings and Calculations

CH2M Hill		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 09/05/2018 11:27	Designed by MA047950	Drainage
File Test 2 - Ditch 1 (30 y	Checked by	Dialilage
Micro Drainage	Source Control 2017.1.2	

Half Drain Time : 489 minutes.

Storm		Max	Max	Max	Max	Max	Max	Status	
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
1.5			0 663	0.463	0.0	1 0	1 0	47 5	0.17
			9.663		0.0	1.8	1.8	47.5	0 K
			9.722		0.0	1.9	1.9		Flood Risk
			9.773		0.0	2.0	2.0		Flood Risk
120			9.815		0.0	2.1	2.1		Flood Risk
180	min S	ummer	9.832	0.632	0.0	2.1	2.1	97.6	Flood Risk
240	min S	ummer	9.840	0.640	0.0	2.1	2.1	100.6	Flood Risk
360	min S	ummer	9.846	0.646	0.0	2.1	2.1	102.6	Flood Risk
480	min S	ummer	9.845	0.645	0.0	2.1	2.1	102.5	Flood Risk
600	min S	ummer	9.844	0.644	0.0	2.1	2.1	101.8	Flood Risk
720	min S	ummer	9.841	0.641	0.0	2.1	2.1	100.8	Flood Risk
960	min S	ummer	9.834	0.634	0.0	2.1	2.1	98.1	Flood Risk
1440	min S	ummer	9.816	0.616	0.0	2.1	2.1	91.8	Flood Risk
2160	min S	ummer	9.788	0.588	0.0	2.0	2.0	82.4	Flood Risk
2880	min S	ummer	9.761	0.561	0.0	2.0	2.0	73.8	Flood Risk
4320	min S	ummer	9.708	0.508	0.0	1.9	1.9	58.8	Flood Risk
5760	min S	ummer	9.660	0.460	0.0	1.8	1.8	46.9	O K
7200	min S	ummer	9.617	0.417	0.0	1.7	1.7	37.6	O K
8640	min S	ummer	9.579	0.379	0.0	1.6	1.6	30.3	O K
10080	min S	ummer	9.545	0.345	0.0	1.5	1.5	24.5	O K
15	min W	inter	9.687	0.487	0.0	1.9	1.9	53.4	O K
30	min W	inter	9.749	0.549	0.0	2.0	2.0	70.3	Flood Risk

D CO 1 III		1101211	rrouded	Discusinge	TIME TOUR	
Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)	
15	min	Summer	79.950	0.0	49.3	23
30	min	Summer	53.199	0.0	65.6	38
60	min	Summer	33.892	0.0	83.6	66
120	min	Summer	20.940	0.0	103.3	126
180	min	Summer	15.610	0.0	115.6	184
240	min	Summer	12.614	0.0	124.5	242
360	min	Summer	9.343	0.0	138.3	354
480	min	Summer	7.540	0.0	148.8	408
600	min	Summer	6.381	0.0	157.4	470
720	min	Summer	5.565	0.0	164.8	534
960	min	Summer	4.481	0.0	176.9	668
1440	min	Summer	3.298	0.0	195.3	944
2160	min	Summer	2.424	0.0	215.3	1360
2880	min	Summer	1.946	0.0	230.5	1756
4320	min	Summer	1.427	0.0	253.5	2512
5760	min	Summer	1.144	0.0	271.0	3240
7200	min	Summer	0.964	0.0	285.5	3968
8640	min	Summer	0.839	0.0	297.9	4672
10080	min	Summer	0.745	0.0	308.9	5352
15	min	Winter	79.950	0.0	55.2	23
30	min	Winter	53.199	0.0	73.5	37

©1982-2017 XP Solutions

Storm Rain Flooded Discharge Time-Peak

CH2M Hill		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 09/05/2018 11:27	Designed by MA047950	Desipodo
File Test 2 - Ditch 1 (30 y	Checked by	Drainage
Micro Drainage	Source Control 2017 1 2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
60	min Wi	nter	9.803	0.603	0.0	2.1	2.1	87.5	Flood Risk
120	min Wi	nter	9.849	0.649	0.0	2.1	2.1	103.7	Flood Risk
180	min Wi	nter	9.869	0.669	0.0	2.2	2.2	111.4	Flood Risk
240	min Wi	nter	9.879	0.679	0.0	2.2	2.2	115.4	Flood Risk
360	min Wi	nter	9.888	0.688	0.0	2.2	2.2	119.0	Flood Risk
480	min Wi	nter	9.888	0.688	0.0	2.2	2.2	119.2	Flood Risk
600	min Wi	nter	9.885	0.685	0.0	2.2	2.2	117.8	Flood Risk
720	min Wi	nter	9.882	0.682	0.0	2.2	2.2	116.6	Flood Risk
960	min Wi	nter	9.873	0.673	0.0	2.2	2.2	113.0	Flood Risk
1440	min Wi	nter	9.848	0.648	0.0	2.1	2.1	103.6	Flood Risk
2160	min Wi	nter	9.808	0.608	0.0	2.1	2.1	89.1	Flood Risk
2880	min Wi	nter	9.768	0.568	0.0	2.0	2.0	76.0	Flood Risk
4320	min Wi	nter	9.691	0.491	0.0	1.9	1.9	54.4	O K
5760	min Wi	nter	9.622	0.422	0.0	1.7	1.7	38.5	O K
7200	min Wi	nter	9.562	0.362	0.0	1.6	1.6	27.2	O K
8640	min Wi	nter	9.510	0.310	0.0	1.5	1.5	19.4	O K
10080	min Wi	nter	9.467	0.267	0.0	1.4	1.4	14.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak		
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
60	min	Winter	33.892	0.0	93.7	66	
120	min	Winter	20.940	0.0	115.7	122	
180	min	Winter	15.610	0.0	129.4	180	
240	min	Winter	12.614	0.0	139.4	238	
360	min	Winter	9.343	0.0	154.9	350	
480	min	Winter	7.540	0.0	166.7	454	
600	min	Winter	6.381	0.0	176.3	500	
720	min	Winter	5.565	0.0	184.5	568	
960	min	Winter	4.481	0.0	198.2	722	
1440	min	Winter	3.298	0.0	218.8	1026	
2160	min	Winter	2.424	0.0	241.1	1460	
2880	min	Winter	1.946	0.0	258.2	1876	
4320	min	Winter	1.427	0.0	283.9	2644	
5760	min	Winter	1.144	0.0	303.5	3400	
7200	min	Winter	0.964	0.0	319.7	4104	
8640	min	Winter	0.839	0.0	333.7	4760	
10080	min	Winter	0.745	0.0	346.0	5448	

CH2M Hill		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 09/05/2018 11:27	Designed by MA047950	Desipago
File Test 2 - Ditch 1 (30 y	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 0.329

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	3	0.110	3	6	0.110	6	9	0.109

CH2M Hill		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 09/05/2018 11:27	Designed by MA047950	Designation
File Test 2 - Ditch 1 (30 y	Checked by	Drainage
Micro Drainage	Source Control 2017 1 2	

Storage is Online Cover Level (m) 10.000

<u>Swale Structure</u>

Infiltration Coefficient Base (m/hr) 0.00000 Length (m) 376.0 Infiltration Coefficient Side (m/hr) 0.00000 Side Slope (1:X) 1.0 Safety Factor 2.0 Slope (1:X) 400.0 Porosity 1.00 Cap Volume Depth (m) 0.000 Invert Level (m) 9.200 Cap Infiltration Depth (m) 0.000 Base Width (m) 0.8

Orifice Outflow Control

Diameter (m) 0.036 Discharge Coefficient 0.600 Invert Level (m) 9.200

CH2M Hill		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 09/05/2018 11:43	Designed by MA047950	Desipago
File Test 2 - Ditch 2 (30 y	Checked by	Drainage
Micro Drainage	Source Control 2017 1 2	

Half Drain Time : 437 minutes.

Storm		Max	Max	Max		Max		Max	Max	Status		
	Event		Level	Depth	Infiltrati	on	Control	Σ	Outflow	Volume		
			(m)	(m)	(1/s)		(1/s)		(1/s)	(m³)		
15	min Sı	ummer	9.660	0.460	0	.0	1.8		1.8	42.6	O K	
30	min Su	ummer	9.717	0.517	0	.0	1.9		1.9	55.9	Flood Risk	
60	min Su	ummer	9.767	0.567	0	.0	2.0		2.0	69.2	Flood Risk	
120	min Su	ummer	9.806	0.606	0	.0	2.1		2.1	81.1	Flood Risk	
180	min Su	ummer	9.822	0.622	0	.0	2.1		2.1	86.2	Flood Risk	
240	min Su	ummer	9.828	0.628	0	.0	2.1		2.1	88.4	Flood Risk	
360	min Su	ummer	9.831	0.631	0	.0	2.1		2.1	89.3	Flood Risk	
480	min Su	ummer	9.830	0.630	0	.0	2.1		2.1	89.0	Flood Risk	
600	min Su	ummer	9.828	0.628	0	.0	2.1		2.1	88.1	Flood Risk	
720	min Su	ummer	9.824	0.624	0	.0	2.1		2.1	87.0	Flood Risk	
960	min Su	ummer	9.815	0.615	0	.0	2.1		2.1	84.1	Flood Risk	
1440	min Su	ummer	9.795	0.595	0	.0	2.1		2.1	77.8	Flood Risk	
2160	min Su	ummer	9.765	0.565	0	.0	2.0		2.0	68.8	Flood Risk	
2880	min Su	ummer	9.736	0.536	0	.0	1.9		1.9	60.6	Flood Risk	
4320	min Su	ummer	9.679	0.479	0	.0	1.8		1.8	46.8	O K	
5760	min Su	ummer	9.629	0.429	0	.0	1.7		1.7	36.2	O K	
7200	min Su	ummer	9.584	0.384	0	.0	1.6		1.6	28.2	O K	
8640	min Su	ummer	9.545	0.345	0	.0	1.5		1.5	22.1	O K	
10080	min Su	ummer	9.511	0.311	0	.0	1.5		1.5	17.6	O K	
15	min W:	inter	9.684	0.484	0	.0	1.8		1.8	47.8	O K	
30	min W:	inter	9.744	0.544	0	.0	2.0		2.0	62.9	Flood Risk	

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	79.950	0.0	44.4	23
30	min	Summer	53.199	0.0	59.1	37
60	min	Summer	33.892	0.0	75.2	66
120	min	Summer	20.940	0.0	93.0	124
180	min	Summer	15.610	0.0	104.0	184
240	min	Summer	12.614	0.0	112.0	242
360	min	Summer	9.343	0.0	124.4	330
480	min	Summer	7.540	0.0	133.9	388
600	min	Summer	6.381	0.0	141.7	452
720	min	Summer	5.565	0.0	148.2	518
960	min	Summer	4.481	0.0	159.2	656
1440	min	Summer	3.298	0.0	175.7	930
2160	min	Summer	2.424	0.0	193.7	1340
2880	min	Summer	1.946	0.0	207.4	1732
4320	min	Summer	1.427	0.0	228.1	2472
5760	min	Summer	1.144	0.0	243.8	3224
7200	min	Summer	0.964	0.0	256.8	3904
8640	min	Summer	0.839	0.0	268.1	4664
10080	min	Summer	0.745	0.0	277.9	5344
15	min	Winter	79.950	0.0	49.7	23
30	min	Winter	53.199	0.0	66.1	37
		©198	2-2017	XP Sol	lutions	

CH2M Hill		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 09/05/2018 11:43	Designed by MA047950	Drainage
File Test 2 - Ditch 2 (30 y	Checked by	Dialilade
Micro Drainage	Source Control 2017 1 2	•

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
60	min Winte	9.797	0.597	0.0	2.1	2.1	78.2	Flood Risk
120	min Winter	9.840	0.640	0.0	2.1	2.1	92.2	Flood Risk
180	min Winter	9.858	0.658	0.0	2.2	2.2	98.6	Flood Risk
240	min Winter	9.867	0.667	0.0	2.2	2.2	101.7	Flood Risk
360	min Winte	9.873	0.673	0.0	2.2	2.2	103.9	Flood Risk
480	min Winter	9.871	0.671	0.0	2.2	2.2	103.2	Flood Risk
600	min Winter	9.867	0.667	0.0	2.2	2.2	102.0	Flood Risk
720	min Winte	9.863	0.663	0.0	2.2	2.2	100.5	Flood Risk
960	min Winte	9.852	0.652	0.0	2.2	2.2	96.4	Flood Risk
1440	min Winter	9.824	0.624	0.0	2.1	2.1	86.9	Flood Risk
2160	min Winter	9.779	0.579	0.0	2.0	2.0	72.9	Flood Risk
2880	min Winter	9.736	0.536	0.0	1.9	1.9	60.7	Flood Risk
4320	min Winter	9.654	0.454	0.0	1.8	1.8	41.3	O K
5760	min Winter	9.582	0.382	0.0	1.6	1.6	27.8	O K
7200	min Winter	9.521	0.321	0.0	1.5	1.5	18.8	O K
8640	min Winter	9.470	0.270	0.0	1.4	1.4	12.9	O K
10080	min Winter	9.430	0.230	0.0	1.2	1.2	9.0	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	it	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60) min	Winter	33.892	0.0	84.3	66
120) min	Winter	20.940	0.0	104.1	122
180) min	Winter	15.610	0.0	116.4	180
240) min	Winter	12.614	0.0	125.5	236
360) min	Winter	9.343	0.0	139.4	346
480) min	Winter	7.540	0.0	150.0	446
600) min	Winter	6.381	0.0	158.7	480
720) min	Winter	5.565	0.0	166.0	556
960) min	Winter	4.481	0.0	178.3	710
1440) min	Winter	3.298	0.0	196.8	1012
2160) min	Winter	2.424	0.0	217.0	1436
2880) min	Winter	1.946	0.0	232.3	1848
4320) min	Winter	1.427	0.0	255.4	2600
5760) min	Winter	1.144	0.0	273.0	3336
7200) min	Winter	0.964	0.0	287.6	4032
8640) min	Winter	0.839	0.0	300.2	4672
10080) min	Winter	0.745	0.0	311.3	5344

CH2M Hill		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Misso
Date 09/05/2018 11:43	Designed by MA047950	Desipago
File Test 2 - Ditch 2 (30 y	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 0.296

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	3	0.099	3	6	0.098	6	9	0.099

CH2M Hill		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 09/05/2018 11:43	Designed by MA047950	Drainage
File Test 2 - Ditch 2 (30 y	Checked by	Dialilada
Micro Drainage	Source Control 2017 1 2	

Storage is Online Cover Level (m) 10.000

<u>Swale Structure</u>

Infiltration Coefficient Base (m/hr) 0.00000 Length (m) 297.0 Infiltration Coefficient Side (m/hr) 0.00000 Side Slope (1:X) 1.0 Safety Factor 2.0 Slope (1:X) 400.0 Porosity 1.00 Cap Volume Depth (m) 0.000 Invert Level (m) 9.200 Cap Infiltration Depth (m) 0.000 Base Width (m) 0.7

Orifice Outflow Control

Diameter (m) 0.036 Discharge Coefficient 0.600 Invert Level (m) 9.200

CH2M Hill		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 09/05/2018 11:48	Designed by MA047950	Desipago
File Test 3 - Ditch 3 (30 y	Checked by	Drainage
Micro Drainage	Source Control 2017 1 2	

Half Drain Time : 215 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min S	Summer	9.704	0.404	0.0	1.9	1.9	25.1	Flood Risk
30	min S	Summer	9.752	0.452	0.0	2.0	2.0	32.7	Flood Risk
60	min S	Summer	9.790	0.490	0.0	2.1	2.1	39.6	Flood Risk
120	min S	Summer	9.815	0.515	0.0	2.1	2.1	44.6	Flood Risk
180	min S	Summer	9.820	0.520	0.0	2.1	2.1	45.5	Flood Risk
240	min S	Summer	9.820	0.520	0.0	2.1	2.1	45.5	Flood Risk
360	min S	Summer	9.816	0.516	0.0	2.1	2.1	44.7	Flood Risk
480	min S	Summer	9.809	0.509	0.0	2.1	2.1	43.4	Flood Risk
600	min S	Summer	9.802	0.502	0.0	2.1	2.1	41.9	Flood Risk
720	min S	Summer	9.794	0.494	0.0	2.1	2.1	40.4	Flood Risk
960	min S	Summer	9.778	0.478	0.0	2.0	2.0	37.4	Flood Risk
1440	min S	Summer	9.747	0.447	0.0	2.0	2.0	31.9	Flood Risk
2160	min S	Summer	9.702	0.402	0.0	1.9	1.9	24.9	Flood Risk
2880	min S	Summer	9.662	0.362	0.0	1.8	1.8	19.5	O K
4320	min S	Summer	9.594	0.294	0.0	1.6	1.6	12.1	O K
5760	min S	Summer	9.541	0.241	0.0	1.4	1.4	7.7	O K
7200	min S	Summer	9.500	0.200	0.0	1.3	1.3	5.1	O K
8640	min S	Summer	9.469	0.169	0.0	1.2	1.2	3.5	O K
10080	min S	Summer	9.444	0.144	0.0	1.1	1.1	2.5	O K
15	min W	7inter	9.725	0.425	0.0	1.9	1.9	28.3	Flood Risk
30	min W	7inter	9.776	0.476	0.0	2.0	2.0	37.0	Flood Risk

	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
			79.950			22
30	min	Summer	53.199	0.0	35.9	36
60	min	Summer	33.892	0.0	45.8	64
120	min	Summer	20.940	0.0	56.5	122
180	min	Summer	15.610	0.0	63.2	168
240	min	Summer	12.614	0.0	68.1	198
360	min	Summer	9.343	0.0	75.7	262
480	min	Summer	7.540	0.0	81.4	332
600	min	Summer	6.381	0.0	86.1	400
720	min	Summer	5.565	0.0	90.2	468
960	min	Summer	4.481	0.0	96.8	606
1440	min	Summer	3.298	0.0	106.9	870
2160	min	Summer	2.424	0.0	117.8	1252
2880	min	Summer	1.946	0.0	126.1	1616
4320	min	Summer	1.427	0.0	138.7	2332
5760	min	Summer	1.144	0.0	148.3	3008
7200	min	Summer	0.964	0.0	156.2	3744
8640	min	Summer	0.839	0.0	163.0	4416
10080	min	Summer	0.745	0.0	169.0	5144
15	min	Winter	79.950	0.0	30.2	22
30	min	Winter	53.199	0.0	40.2	36

Storm Rain Flooded Discharge Time-Peak

CH2M Hill		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 09/05/2018 11:48	Designed by MA047950	Desipago
File Test 3 - Ditch 3 (30 y	Checked by	Drainage
Micro Drainage	Source Control 2017 1 2	

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
	min Wint			0.0	2.1	2.1		Flood Risk
120	min Wint	er 9.848	0.548	0.0	2.2	2.2	51.3	Flood Risk
180	min Wint	er 9.856	0.556	0.0	2.2	2.2	52.9	Flood Risk
240	min Wint	er 9.855	0.555	0.0	2.2	2.2	52.7	Flood Risk
360	min Wint	er 9.850	0.550	0.0	2.2	2.2	51.6	Flood Risk
480	min Wint	er 9.841	0.541	0.0	2.2	2.2	49.8	Flood Risk
600	min Winte	er 9.830	0.530	0.0	2.2	2.2	47.5	Flood Risk
720	min Wint	er 9.818	0.518	0.0	2.1	2.1	45.2	Flood Risk
960	min Winte	er 9.794	0.494	0.0	2.1	2.1	40.5	Flood Risk
1440	min Winte	er 9.748	0.448	0.0	2.0	2.0	32.1	Flood Risk
2160	min Winte	er 9.683	0.383	0.0	1.8	1.8	22.2	O K
2880	min Winte	er 9.625	0.325	0.0	1.7	1.7	15.2	O K
4320	min Winte	er 9.534	0.234	0.0	1.4	1.4	7.2	O K
5760	min Winte	er 9.472	0.172	0.0	1.2	1.2	3.6	O K
7200	min Winte	er 9.432	0.132	0.0	1.0	1.0	2.0	O K
8640	min Winte	er 9.406	0.106	0.0	0.9	0.9	1.3	O K
10080	min Wint	er 9.388	0.088	0.0	0.8	0.8	0.9	O K

Storm		Rain	Flooded	Discharge	Time-Peak		
		Even	t	(mm/hr)	Volume	Volume	(mins)
					(m³)	(m³)	
	60	min	Winter	33.892	0.0	51.2	64
	120	min	Winter	20.940	0.0	63.3	120
	180	min	Winter	15.610	0.0	70.8	176
	240	min	Winter	12.614	0.0	76.3	226
	360	min	Winter	9.343	0.0	84.8	280
	480	min	Winter	7.540	0.0	91.2	358
	600	min	Winter	6.381	0.0	96.5	434
	720	min	Winter	5.565	0.0	101.0	510
	960	min	Winter	4.481	0.0	108.4	654
	1440	min	Winter	3.298	0.0	119.7	926
	2160	min	Winter	2.424	0.0	131.9	1304
	2880	min	Winter	1.946	0.0	141.3	1672
	4320	min	Winter	1.427	0.0	155.3	2340
	5760	min	Winter	1.144	0.0	166.0	3008
	7200	min	Winter	0.964	0.0	174.9	3680
	8640	min	Winter	0.839	0.0	182.6	4408
1	0800	min	Winter	0.745	0.0	189.3	5136

CH2M Hill		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Misso
Date 09/05/2018 11:48	Designed by MA047950	Desipago
File Test 3 - Ditch 3 (30 y	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 0.180

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area	
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)	
0	3	0.060	3	6	0.060	6	9	0.060	

CH2M Hill		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 09/05/2018 11:48	Designed by MA047950	Drainage
File Test 3 - Ditch 3 (30 y	Checked by	Dialilage
Micro Drainage	Source Control 2017.1.2	

Storage is Online Cover Level (m) 10.000

<u>Swale Structure</u>

Infiltration Coefficient Base (m/hr) 0.00000 Length (m) 187.0 Infiltration Coefficient Side (m/hr) 0.00000 Side Slope (1:X) 1.0 Safety Factor 2.0 Slope (1:X) 400.0 Porosity 1.00 Cap Volume Depth (m) 0.000 Invert Level (m) 9.300 Cap Infiltration Depth (m) 0.000 Base Width (m) 0.5

Orifice Outflow Control

Diameter (m) 0.038 Discharge Coefficient 0.600 Invert Level (m) 9.300

CH2M Hill		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 09/05/2018 11:53	Designed by MA047950	Drainage
File Test 3 - Ditch 4 (30 y	Checked by	Dialilage
Micro Drainage	Source Control 2017.1.2	

Half Drain Time : 447 minutes.

Storm	ı	Max	Max	Max	Max	Max	Max	Status
Event	:	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
min (Summer	9 605	0 505	0.0	1 0	1 0	12 7	O K
								0 K
								Flood Risk
								Flood Risk
								Flood Risk
								Flood Risk
								Flood Risk
min :	Summer	9.784	0.684	0.0	2.1	2.1	89.5	Flood Risk
min :	Summer	9.781	0.681	0.0	2.1	2.1	88.6	Flood Risk
min :	Summer	9.778	0.678	0.0	2.1	2.1	87.5	Flood Risk
min :	Summer	9.769	0.669	0.0	2.1	2.1	84.6	Flood Risk
min :	Summer	9.748	0.648	0.0	2.0	2.0	78.3	Flood Risk
min :	Summer	9.717	0.617	0.0	2.0	2.0	69.3	Flood Risk
min :	Summer	9.686	0.586	0.0	1.9	1.9	61.1	O K
min :	Summer	9.627	0.527	0.0	1.8	1.8	47.2	O K
min :	Summer	9.573	0.473	0.0	1.7	1.7	36.5	O K
min :	Summer	9.525	0.425	0.0	1.6	1.6	28.3	ОК
min :	Summer	9.483	0.383	0.0	1.5	1.5	22.1	O K
								0 K
								O K
								0 K
	min :	min Summer	### Revent	Event Level (m) Depth (m) min Summer 9.605 0.505 min Summer 9.665 0.565 min Summer 9.717 0.617 min Summer 9.759 0.659 min Summer 9.775 0.675 min Summer 9.782 0.682 min Summer 9.785 0.685	Event Level (m) Depth (m) Infiltration (1/s) min Summer 9.605 0.505 0.0 min Summer 9.665 0.565 0.0 min Summer 9.717 0.617 0.0 min Summer 9.759 0.659 0.0 min Summer 9.778 0.682 0.0 min Summer 9.784 0.684 0.0 min Summer 9.781 0.681 0.0 min Summer 9.781 0.681 0.0 min Summer 9.778 0.681 0.0 min Summer 9.748 0.648 0.0 min Summer 9.748 0.648 0.0 min Summer 9.748 0.649 0.0 min Summer 9.666 0.586	Event Level (m) Depth (m) Infiltration (1/s) Control (1/s) min Summer (m) 9.605 0.505 0.00 1.8 min Summer (m) 9.665 0.565 0.00 1.9 min Summer (m) 9.717 0.617 0.00 2.0 min Summer (m) 9.759 0.659 0.00 2.0 min Summer (m) 9.775 0.675 0.00 2.1 min Summer (m) 9.782 0.682 0.00 2.1 min Summer (m) 9.785 0.685 0.00 2.1 min Summer (m) 9.784 0.684 0.0 2.1 min Summer (m) 9.781 0.681 0.0 2.1 min Summer (m) 9.784 0.681 0.0 2.1 min Summer (m) 9.785 0.681 0.0 2.1 min Summer (m) 9.784 0.684 0.0 2.0 min Summer (m) 9.748 0.648 0.0 2.0 min Summer (m) 9.686	Event Level (m) Depth (m) Infiltration (1/s) Control (1/s) E Outflow (1/s) min Summer (1/s) 9.605 0.505 0.0 1.8 1.8 min Summer (1/s) 9.665 0.565 0.0 1.9 1.9 min Summer (1/s) 9.717 0.617 0.0 2.0 2.0 2.0 min Summer (1/s) 9.755 0.675 0.0 2.1 2.2 2.0 min Summer (1/s) 9.782 0.682 0.0 2.1 2.1 2.1 min Summer (1/s) 9.784 0.682 0.0 2.1 2.1 2.1 min Summer (1/s) 9.784 0.682 0.0 2.1 2.1 2.1 min Summer (1/s) 9.784 0.682 0.0 2.1 2.1 2.1 min Summer (1/s) 9.784 0.684 0.0 2.1 2.1 2.1 min Summer (1/s) 9.748 0.669 0.0 2.1 2.2 2.0 min Summer (1/s) 9.748	Event (m) Level (m) Level (m) Infiltration (1/s) Control (1/s) E lotflow (1/s) Volume (1/s) min Summer (min Summer) 9.605 0.505 0.0 1.8 1.8 42.7 min Summer 9.665 0.565 0.0 1.9 1.9 1.9 56.1 min Summer 9.717 0.617 0.0 2.0 2.0 2.0 69.5 min Summer 9.759 0.659 0.0 2.0 2.0 2.0 81.5 min Summer 9.782 0.682 0.0 2.1 2.1 2.1 88.9 min Summer 9.782 0.682 0.0 2.1 2.1 2.1 88.9 min Summer 9.782 0.682 0.0 2.1 2.1 2.1 88.9 min Summer 9.784 0.684 0.0 2.1 2.1 89.9 min Summer 9.781 0.684 0.0 2.1 2.1 2.1 87.5 min Summer 9.7

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	79.950	0.0	44.5	23
30	min	Summer	53.199	0.0	59.3	37
60	min	Summer	33.892	0.0	75.5	66
120	min	Summer	20.940	0.0	93.3	124
180	min	Summer	15.610	0.0	104.3	184
240	min	Summer	12.614	0.0	112.4	242
360	min	Summer	9.343	0.0	124.9	334
480	min	Summer	7.540	0.0	134.4	392
600	min	Summer	6.381	0.0	142.1	456
720	min	Summer	5.565	0.0	148.7	520
960	min	Summer	4.481	0.0	159.7	658
1440	min	Summer	3.298	0.0	176.3	930
2160	min	Summer	2.424	0.0	194.4	1340
2880	min	Summer	1.946	0.0	208.1	1732
4320	min	Summer	1.427	0.0	228.8	2504
5760	min	Summer	1.144	0.0	244.6	3224
7200	min	Summer	0.964	0.0	257.7	3960
8640	min	Summer	0.839	0.0	269.0	4664
10080	min	Summer	0.745	0.0	278.9	5344
15	min	Winter	79.950	0.0	49.9	23
30	min	Winter	53.199	0.0	66.4	37
		©198	2-2017	XP Sol	Lutions	

CH2M Hill		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 09/05/2018 11:53	Designed by MA047950	Drainage
File Test 3 - Ditch 4 (30 y	Checked by	Dialilage
Micro Drainage	Source Control 2017 1 2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
60	min Win	iter	9.749	0.649	0.0	2.0	2.0	78.5	Flood Risk
120	min Win	nter	9.794	0.694	0.0	2.1	2.1	92.6	Flood Risk
180	min Win	nter	9.813	0.713	0.0	2.1	2.1	99.1	Flood Risk
240	min Win	nter	9.822	0.722	0.0	2.1	2.1	102.2	Flood Risk
360	min Win	nter	9.828	0.728	0.0	2.2	2.2	104.6	Flood Risk
480	min Win	nter	9.827	0.727	0.0	2.2	2.2	104.0	Flood Risk
600	min Win	nter	9.823	0.723	0.0	2.1	2.1	102.7	Flood Risk
720	min Win	nter	9.819	0.719	0.0	2.1	2.1	101.2	Flood Risk
960	min Win	nter	9.807	0.707	0.0	2.1	2.1	97.2	Flood Risk
1440	min Win	nter	9.778	0.678	0.0	2.1	2.1	87.7	Flood Risk
2160	min Win	nter	9.732	0.632	0.0	2.0	2.0	73.7	Flood Risk
2880	min Win	nter	9.687	0.587	0.0	1.9	1.9	61.4	O K
4320	min Win	nter	9.600	0.500	0.0	1.8	1.8	41.8	O K
5760	min Win	nter	9.523	0.423	0.0	1.6	1.6	28.0	O K
7200	min Win	nter	9.457	0.357	0.0	1.5	1.5	18.8	O K
8640	min Win	nter	9.401	0.301	0.0	1.4	1.4	12.7	O K
10080	min Win	nter	9.356	0.256	0.0	1.2	1.2	8.8	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	33.892	0.0	84.6	66
120	min	Winter	20.940	0.0	104.5	122
180	min	Winter	15.610	0.0	116.8	180
240	min	Winter	12.614	0.0	125.9	236
360	min	Winter	9.343	0.0	139.8	348
480	min	Winter	7.540	0.0	150.5	448
600	min	Winter	6.381	0.0	159.2	482
720	min	Winter	5.565	0.0	166.6	558
960	min	Winter	4.481	0.0	178.9	712
1440	min	Winter	3.298	0.0	197.5	1014
2160	min	Winter	2.424	0.0	217.7	1448
2880	min	Winter	1.946	0.0	233.1	1848
4320	min	Winter	1.427	0.0	256.3	2600
5760	min	Winter	1.144	0.0	274.0	3336
7200	min	Winter	0.964	0.0	288.6	4032
8640	min	Winter	0.839	0.0	301.2	4672
10080	min	Winter	0.745	0.0	312.3	5344

CH2M Hill		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 09/05/2018 11:53	Designed by MA047950	Desipago
File Test 3 - Ditch 4 (30 y	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 0.297

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	3	0.099	3	6	0.099	6	9	0.099

CH2M Hill		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 09/05/2018 11:53	Designed by MA047950	Designation
File Test 3 - Ditch 4 (30 y	Checked by	Drainage
Micro Drainage	Source Control 2017 1 2	•

Storage is Online Cover Level (m) 10.000

<u>Swale Structure</u>

Infiltration Coefficient Base (m/hr) 0.00000 Length (m) 343.0 Infiltration Coefficient Side (m/hr) 0.00000 Side Slope (1:X) 1.0 Safety Factor 2.0 Slope (1:X) 400.0 Porosity 1.00 Cap Volume Depth (m) 0.000 Invert Level (m) 9.100 Cap Infiltration Depth (m) 0.000 Base Width (m) 0.5

Orifice Outflow Control

Diameter (m) 0.035 Discharge Coefficient 0.600 Invert Level (m) 9.100

CH2M Hill		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 09/05/2018 12:04	Designed by MA047950	Desipago
File Test 2 - Ditch 5 (30 y	Checked by	Drainage
Micro Drainage	Source Control 2017 1 2	

Half Drain Time : 110 minutes.

Storm		Max	Max	Max		Max		Max	Max	Status	
Event			Level	Depth	Infiltration	on (Control	Σ	Outflow	Volume	
			(m)	(m)	(1/s)		(1/s)		(1/s)	(m³)	
15	min Su	ummer	9.719	0.319	0.	. 0	1.7		1.7	13.4	Flood Risk
30	min Su	ummer	9.764	0.364	0.	. 0	1.9		1.9	17.1	Flood Risk
60	min Su	ummer	9.796	0.396	0.	. 0	1.9		1.9	20.0	Flood Risk
120	min Su	ummer	9.808	0.408	0.	. 0	2.0		2.0	21.2	Flood Risk
180	min Su	ummer	9.807	0.407	0.	. 0	2.0		2.0	21.1	Flood Risk
240	min Su	ummer	9.802	0.402	0.	. 0	2.0		2.0	20.6	Flood Risk
360	min Su	ummer	9.789	0.389	0.	. 0	1.9		1.9	19.3	Flood Risk
480	min Su	ımmer	9.775	0.375	0.	. 0	1.9		1.9	18.1	Flood Risk
600	min Su	ımmer	9.761	0.361	0.	. 0	1.9		1.9	16.8	Flood Risk
720	min Su	ımmer	9.747	0.347	0.	. 0	1.8		1.8	15.7	Flood Risk
960	min Su	ımmer	9.721	0.321	0.	. 0	1.7		1.7	13.5	Flood Risk
1440	min Su	ımmer	9.677	0.277	0.	. 0	1.6		1.6	10.1	O K
2160	min Su	ımmer	9.626	0.226	0.	. 0	1.4		1.4	6.6	O K
2880	min Su	ımmer	9.588	0.188	0.	. 0	1.3		1.3	4.4	O K
4320	min Su	ımmer	9.535	0.135	0.	. 0	1.1		1.1	2.1	O K
5760	min Su	ımmer	9.502	0.102	0.	. 0	0.9		0.9	1.2	O K
7200	min Su	ummer	9.480	0.080	0.	. 0	0.8		0.8	0.7	O K
8640	min Su	ummer	9.466	0.066	0.	. 0	0.7		0.7	0.5	O K
10080	min Su	ummer	9.456	0.056	0.	. 0	0.6		0.6	0.3	O K
15	min Wi	nter	9.741	0.341	0.	. 0	1.8		1.8	15.1	Flood Risk
30	min Wi	nter	9.790	0.390	0.	. 0	1.9		1.9	19.4	Flood Risk

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	79.950	0.0	15.0	21
30	min	Summer	53.199	0.0	19.9	35
60	min	Summer	33.892	0.0	25.4	62
120	min	Summer	20.940	0.0	31.4	102
180	min	Summer	15.610	0.0	35.1	134
240	min	Summer	12.614	0.0	37.8	168
360	min	Summer	9.343	0.0	42.0	238
480	min	Summer	7.540	0.0	45.2	306
600	min	Summer	6.381	0.0	47.9	372
720	min	Summer	5.565	0.0	50.1	438
960	min	Summer	4.481	0.0	53.8	568
1440	min	Summer	3.298	0.0	59.4	812
2160	min	Summer	2.424	0.0	65.4	1172
2880	min	Summer	1.946	0.0	70.1	1528
4320	min	Summer	1.427	0.0	77.1	2212
5760	min	Summer	1.144	0.0	82.4	2936
7200	min	Summer	0.964	0.0	86.8	3672
8640	min	Summer	0.839	0.0	90.6	4400
10080	min	Summer	0.745	0.0	93.9	4992
15	min	Winter	79.950	0.0	16.8	22
30	min	Winter	53.199	0.0	22.3	35
		©198	2-2017	XP Sol	lutions	

CH2M Hill		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 09/05/2018 12:04	Designed by MA047950	Drainage
File Test 2 - Ditch 5 (30 y	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
		er 9.826 er 9.842		0.0	2.0	2.0		Flood Risk Flood Risk
		er 9.840 er 9.832		0.0	2.1	2.1		Flood Risk Flood Risk
		er 9.813 er 9.792		0.0	2.0	2.0 1.9		Flood Risk Flood Risk
720	min Wint	er 9.771 er 9.750	0.350	0.0	1.9 1.8	1.9 1.8	15.9	Flood Risk Flood Risk
1440	min Wint	er 9.713 er 9.651	0.251	0.0	1.7	1.7	8.3	Flood Risk O K
2880	min Wint	er 9.585 er 9.540	0.140	0.0	1.3	1.3	4.3	0 K 0 K
5760	min Wint	er 9.489 er 9.465	0.065	0.0	0.8	0.8	0.9	0 K
8640	min Wint	er 9.454 er 9.449 er 9.445	0.049	0.0 0.0 0.0	0.6 0.5 0.4	0.6 0.5 0.4	0.3 0.3 0.2	0 K 0 K
10000	IIITII WIII	CT 7.447	0.045	0.0	0.4	0.4	0.2	O K

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	33.892	0.0	28.5	62
120	min	Winter	20.940	0.0	35.2	114
180	min	Winter	15.610	0.0	39.3	142
240	min	Winter	12.614	0.0	42.4	182
360	min	Winter	9.343	0.0	47.1	256
480	min	Winter	7.540	0.0	50.7	330
600	min	Winter	6.381	0.0	53.6	400
720	min	Winter	5.565	0.0	56.1	468
960	min	Winter	4.481	0.0	60.2	598
1440	min	Winter	3.298	0.0	66.5	844
2160	min	Winter	2.424	0.0	73.3	1192
2880	min	Winter	1.946	0.0	78.5	1528
4320	min	Winter	1.427	0.0	86.3	2208
5760	min	Winter	1.144	0.0	92.2	2912
7200	min	Winter	0.964	0.0	97.2	3656
8640	min	Winter	0.839	0.0	101.4	4400
10080	min	Winter	0.745	0.0	105.2	5016

CH2M Hill		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 09/05/2018 12:04	Designed by MA047950	Desipago
File Test 2 - Ditch 5 (30 y	Checked by	Dialilade
Micro Drainage	Source Control 2017.1.2	

Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 0.100

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area	
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)	
0	3	0.033	3	6	0.033	6	9	0.034	

CH2M Hill		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 09/05/2018 12:04	Designed by MA047950	Drainage
File Test 2 - Ditch 5 (30 y	Checked by	Dialilage
Micro Drainage	Source Control 2017 1 2	

Storage is Online Cover Level (m) 10.000

<u>Swale Structure</u>

Orifice Outflow Control

Diameter (m) 0.039 Discharge Coefficient 0.600 Invert Level (m) 9.400

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 16/05/2018 14:41	Designed by DD048136	Desinado
File Ditch 6 (30 year).srcx	Checked by	Dialilage
XP Solutions	Source Control 2017.1.2	

Half Drain Time : 439 minutes.

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
15	min	Summer	9.660	0.460	0.0	1.8	1.8	42.7	ОК
30	min	Summer	9.718	0.518	0.0	1.9	1.9	56.1	Flood Risk
60	min	Summer	9.767	0.567	0.0	2.0	2.0	69.5	Flood Risk
120	min	Summer	9.807	0.607	0.0	2.1	2.1	81.4	Flood Risk
180	min	Summer	9.823	0.623	0.0	2.1	2.1	86.5	Flood Risk
240	min	Summer	9.829	0.629	0.0	2.1	2.1	88.7	Flood Risk
360	min	Summer	9.832	0.632	0.0	2.1	2.1	89.7	Flood Risk
480	min	Summer	9.831	0.631	0.0	2.1	2.1	89.4	Flood Risk
600	min	Summer	9.829	0.629	0.0	2.1	2.1	88.5	Flood Risk
720	min	Summer	9.825	0.625	0.0	2.1	2.1	87.3	Flood Risk
960	min	Summer	9.817	0.617	0.0	2.1	2.1	84.5	Flood Risk
1440	min	Summer	9.797	0.597	0.0	2.1	2.1	78.2	Flood Risk
2160	min	Summer	9.766	0.566	0.0	2.0	2.0	69.2	Flood Risk
2880	min	Summer	9.737	0.537	0.0	1.9	1.9	61.0	Flood Risk
4320	min	Summer	9.681	0.481	0.0	1.8	1.8	47.1	O K
5760	min	Summer	9.630	0.430	0.0	1.7	1.7	36.5	O K
7200	min	Summer	9.585	0.385	0.0	1.6	1.6	28.4	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
1 -			70 050	0.0	4.4 5	0.2
		Summer	79.950	0.0	44.5	23
30	min	Summer	53.199	0.0	59.3	37
60	min	Summer	33.892	0.0	75.5	66
120	min	Summer	20.940	0.0	93.3	124
180	min	Summer	15.610	0.0	104.3	184
240	min	Summer	12.614	0.0	112.4	242
360	min	Summer	9.343	0.0	124.9	330
480	min	Summer	7.540	0.0	134.4	390
600	min	Summer	6.381	0.0	142.1	452
720	min	Summer	5.565	0.0	148.7	518
960	min	Summer	4.481	0.0	159.7	656
1440	min	Summer	3.298	0.0	176.3	930
2160	min	Summer	2.424	0.0	194.4	1340
2880	min	Summer	1.946	0.0	208.1	1732
4320	min	Summer	1.427	0.0	228.8	2476
5760	min	Summer	1.144	0.0	244.6	3224
7200	min	Summer	0.964	0.0	257.7	3904

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 16/05/2018 14:41	Designed by DD048136	Designado
File Ditch 6 (30 year).srcx	Checked by	Diali laye
XP Solutions	Source Control 2017.1.2	<u>'</u>

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
8640	min	Summer	9.546	0.346	0.0	1.5	1.5	22.3	ОК
10080	min	Summer	9.512	0.312	0.0	1.5	1.5	17.7	O K
15	min	Winter	9.684	0.484	0.0	1.8	1.8	48.0	O K
30	min	Winter	9.745	0.545	0.0	2.0	2.0	63.2	Flood Risk
60	min	Winter	9.798	0.598	0.0	2.1	2.1	78.5	Flood Risk
120	min	Winter	9.841	0.641	0.0	2.1	2.1	92.5	Flood Risk
180	min	Winter	9.859	0.659	0.0	2.2	2.2	99.0	Flood Risk
240	min	Winter	9.868	0.668	0.0	2.2	2.2	102.1	Flood Risk
360	min	Winter	9.874	0.674	0.0	2.2	2.2	104.3	Flood Risk
480	min	Winter	9.872	0.672	0.0	2.2	2.2	103.7	Flood Risk
600	min	Winter	9.869	0.669	0.0	2.2	2.2	102.4	Flood Risk
720	min	Winter	9.864	0.664	0.0	2.2	2.2	100.9	Flood Risk
960	min	Winter	9.853	0.653	0.0	2.2	2.2	96.9	Flood Risk
1440	min	Winter	9.825	0.625	0.0	2.1	2.1	87.3	Flood Risk
2160	min	Winter	9.781	0.581	0.0	2.0	2.0	73.4	Flood Risk
2880	min	Winter	9.737	0.537	0.0	1.9	1.9	61.1	Flood Risk
4320	min	Winter	9.655	0.455	0.0	1.8	1.8	41.6	O K
5760	min	Winter	9.583	0.383	0.0	1.6	1.6	28.1	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
8640	min	Summer	0.839	0.0	269.0	4664
10080	min	Summer	0.745	0.0	278.9	5344
15	min	Winter	79.950	0.0	49.9	23
30	min	Winter	53.199	0.0	66.4	37
60	min	Winter	33.892	0.0	84.6	66
120	min	Winter	20.940	0.0	104.5	122
180	min	Winter	15.610	0.0	116.8	180
240	min	Winter	12.614	0.0	125.9	236
360	min	Winter	9.343	0.0	139.8	346
480	min	Winter	7.540	0.0	150.5	446
600	min	Winter	6.381	0.0	159.2	480
720	min	Winter	5.565	0.0	166.6	556
960	min	Winter	4.481	0.0	178.9	712
1440	min	Winter	3.298	0.0	197.5	1012
2160	min	Winter	2.424	0.0	217.7	1436
2880	min	Winter	1.946	0.0	233.1	1848
4320	min	Winter	1.427	0.0	256.3	2600
5760	min	Winter	1.144	0.0	274.0	3336

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 16/05/2018 14:41	Designed by DD048136	Desinado
File Ditch 6 (30 year).srcx	Checked by	namaye
XP Solutions	Source Control 2017.1.2	

Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)			Max Volume (m³)	Status
7200 min Winter 8640 min Winter			0.0	1.5		19.0 13.0	0 K 0 K
10080 min Winter	9.431	0.231	0.0	1.2	1.2	9.1	O K

Storm		Rain	Flooded	Discharge	Time-Peak		
Event		vent (mm/		Volume	Volume	(mins)	
				(m³)	(m³)		
7200	min	Winter	0.964	0.0	288.6	4032	
		Winter	0.839	0.0	301.2	4672	
10080	min	Winter	0.745	0.0	312.3	5344	

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 16/05/2018 14:41	Designed by DD048136	Desinage
File Ditch 6 (30 year).srcx	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

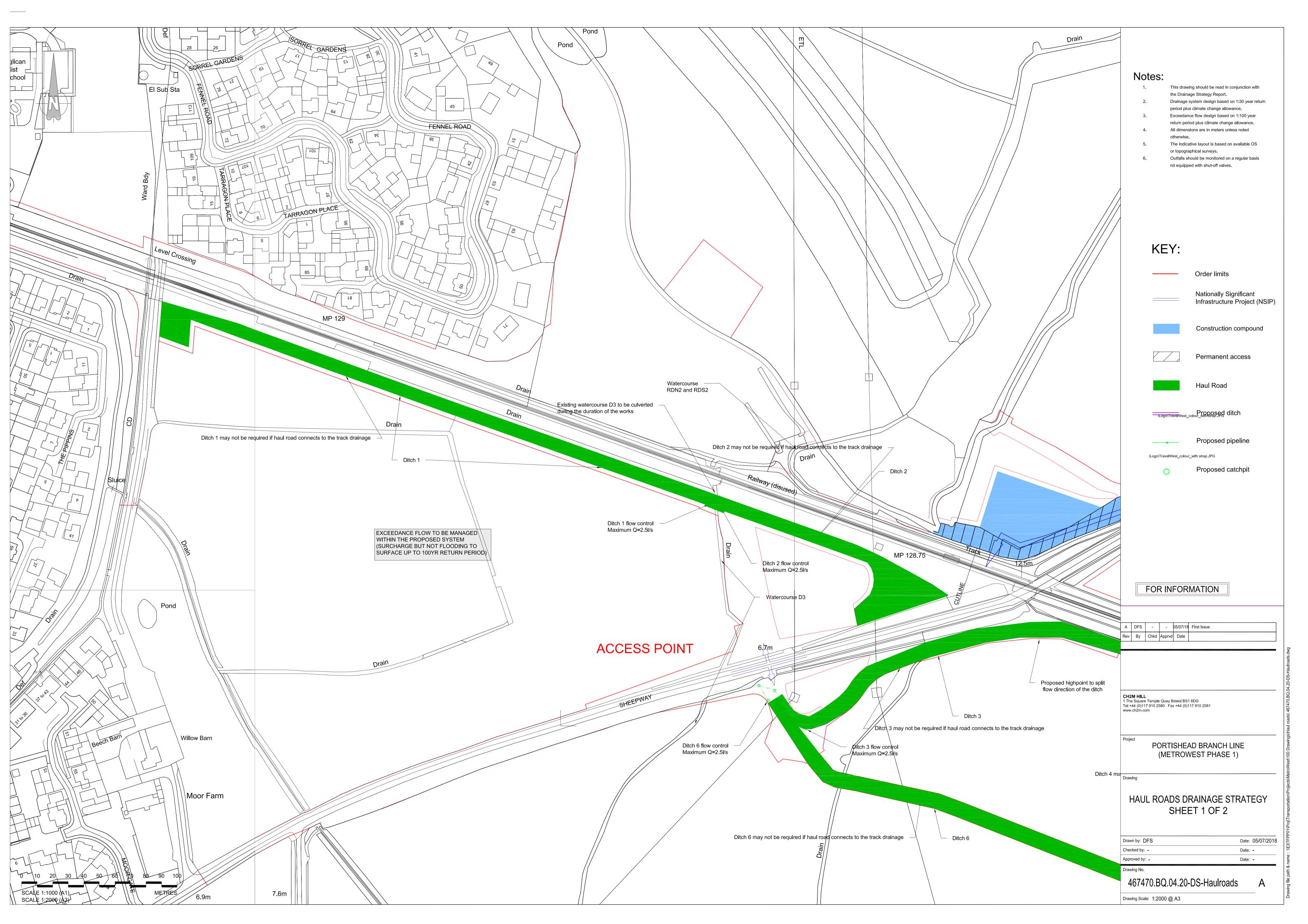
Rainfall Model FSR Winter Storms Yes
Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

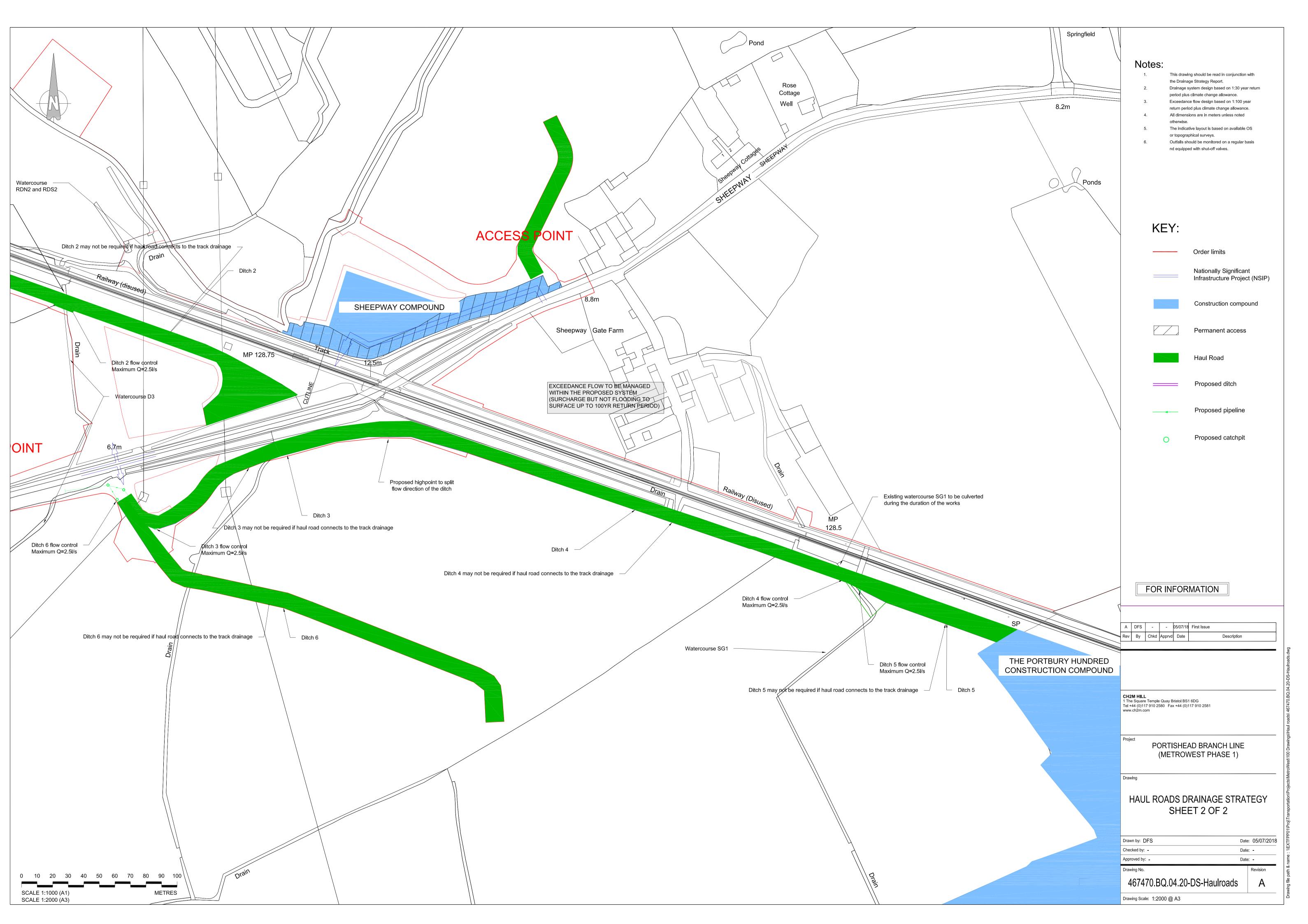
Time Area Diagram

Total Area (ha) 0.297

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
Λ	3	0.099	3	6	0.099	6	9	0.099

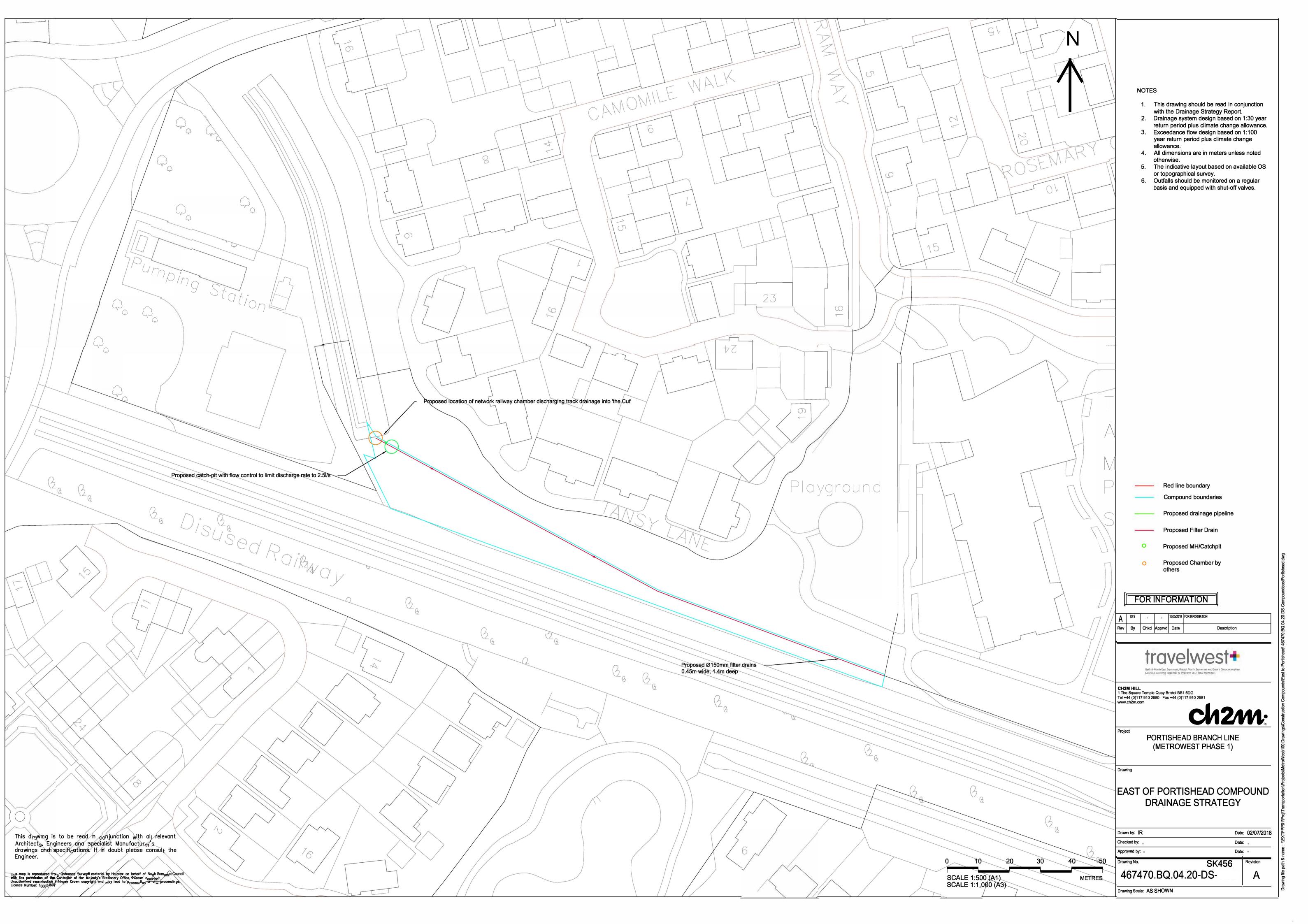
CH2M		Page 5
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 16/05/2018 14:41	Designed by DD048136	Desinado
File Ditch 6 (30 year).srcx	Checked by	Drainage
XP Solutions	Source Control 2017.1.2	•


Storage is Online Cover Level (m) 10.000


Swale Structure

Infiltration	Coefficient	Base	(m/hr)	0.00000		Length (m)	296.0
Infiltration	Coefficient	Side	(m/hr)	0.00000		Side Slope (1:X)	1.0
	Sa	afety	Factor	2.0		Slope (1:X)	400.0
		Po	orosity	1.00		Cap Volume Depth (m)	0.000
	Inve	rt Lev	vel (m)	9.200	Cap	Infiltration Depth (m)	0.000
	Bas	se Wid	dth (m)	0.7			

Orifice Outflow Control


Diameter (m) 0.036 Discharge Coefficient 0.600 Invert Level (m) 9.200

APPENDIX E

Compounds Drainage Strategy Drawings and Calculations

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 16:51	Designed by GR061116	Desinado
File FILTER DRAIN_1.4M_DEEP.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017 1 2	•

Half Drain Time : 4 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event	t	Level	Depth	${\tt Infiltration}$	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min :	Summer	5.691	1.091	0.0	43.2	43.2	13.8	ОК
30	min :	Summer	5.741	1.141	0.0	44.2	44.2	14.6	Flood Risk
60	min :	Summer	5.581	0.981	0.0	40.9	40.9	12.2	O K
120	min :	Summer	5.292	0.692	0.0	33.9	33.9	7.9	O K
180	min :	Summer	5.107	0.507	0.0	28.6	28.6	4.9	O K
240	min :	Summer	4.997	0.397	0.0	24.9	24.9	3.2	O K
360	min :	Summer	4.869	0.269	0.0	19.7	19.7	1.6	O K
480	min :	Summer	4.805	0.205	0.0	16.5	16.5	1.0	O K
600	min :	Summer	4.783	0.183	0.0	14.0	14.0	0.8	O K
720	min :	Summer	4.768	0.168	0.0	12.3	12.3	0.7	O K
960	min :	Summer	4.746	0.146	0.0	9.9	9.9	0.5	O K
1440	min :	Summer	4.722	0.122	0.0	7.3	7.3	0.3	O K
2160	min :	Summer	4.698	0.098	0.0	5.4	5.4	0.2	O K
2880	min :	Summer	4.686	0.086	0.0	4.3	4.3	0.2	O K
4320	min :	Summer	4.675	0.075	0.0	3.2	3.2	0.1	O K
5760	min :	Summer	4.668	0.068	0.0	2.6	2.6	0.1	O K
7200	min :	Summer	4.662	0.062	0.0	2.2	2.2	0.1	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
1 5		Summer	70 050	0.0	40.5	16
			79.950			
30	min	Summer	53.199	0.0	53.9	24
60	min	Summer	33.892	0.0	68.6	40
120	min	Summer	20.940	0.0	84.8	70
180	min	Summer	15.610	0.0	94.8	100
240	min	Summer	12.614	0.0	102.2	128
360	min	Summer	9.343	0.0	113.5	188
480	min	Summer	7.540	0.0	122.1	246
600	min	Summer	6.381	0.0	129.2	306
720	min	Summer	5.565	0.0	135.2	366
960	min	Summer	4.481	0.0	145.2	488
1440	min	Summer	3.298	0.0	160.3	728
2160	min	Summer	2.424	0.0	176.7	1072
2880	min	Summer	1.946	0.0	189.2	1464
4320	min	Summer	1.427	0.0	208.0	2156
5760	min	Summer	1.144	0.0	222.4	2888
7200	min	Summer	0.964	0.0	234.3	3544

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 16:51	Designed by GR061116	Desinago
File FILTER DRAIN_1.4M_DEEP.SRCX	Checked by	Dialilage
XP Solutions	Source Control 2017.1.2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
8640	min :	Summer	4.657	0.057	0.0	1.9	1.9	0.1	ОК
10080	min :	Summer	4.654	0.054	0.0	1.7	1.7	0.1	O K
15	min N	Winter	5.833	1.233	0.0	46.1	46.1	16.0	Flood Risk
30	min N	Winter	5.830	1.230	0.0	46.0	46.0	15.9	Flood Risk
60	min N	Winter	5.544	0.944	0.0	40.0	40.0	11.7	O K
120	min N	Winter	5.151	0.551	0.0	29.9	29.9	5.7	O K
180	min N	Winter	4.970	0.370	0.0	23.9	23.9	2.8	O K
240	min N	Winter	4.869	0.269	0.0	19.8	19.8	1.6	O K
360	min N	Winter	4.790	0.190	0.0	14.8	14.8	0.8	O K
480	min N	Winter	4.765	0.165	0.0	12.0	12.0	0.6	O K
600	min N	Winter	4.749	0.149	0.0	10.2	10.2	0.5	O K
720	min N	Winter	4.737	0.137	0.0	8.9	8.9	0.4	O K
960	min N	Winter	4.721	0.121	0.0	7.2	7.2	0.3	O K
1440	min N	Winter	4.697	0.097	0.0	5.3	5.3	0.2	O K
2160	min N	Winter	4.682	0.082	0.0	3.9	3.9	0.2	O K
2880	min N	Winter	4.674	0.074	0.0	3.1	3.1	0.1	O K
4320	min N	Winter	4.664	0.064	0.0	2.3	2.3	0.1	O K
5760	min N	Winter	4.657	0.057	0.0	1.9	1.9	0.1	O K

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
8640	min	Summer	0.839	0.0	244.5	4312
10080	min	Summer	0.745	0.0	253.5	5040
15	min	Winter	79.950	0.0	45.3	16
30	min	Winter	53.199	0.0	60.3	24
60	min	Winter	33.892	0.0	76.9	40
120	min	Winter	20.940	0.0	95.0	70
180	min	Winter	15.610	0.0	106.2	100
240	min	Winter	12.614	0.0	114.4	128
360	min	Winter	9.343	0.0	127.1	186
480	min	Winter	7.540	0.0	136.8	246
600	min	Winter	6.381	0.0	144.7	306
720	min	Winter	5.565	0.0	151.5	364
960	min	Winter	4.481	0.0	162.6	486
1440	min	Winter	3.298	0.0	179.5	728
2160	min	Winter	2.424	0.0	197.9	1076
2880	min	Winter	1.946	0.0	211.9	1472
4320	min	Winter	1.427	0.0	233.0	2152
5760	min	Winter	1.144	0.0	249.1	2984

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 16:51	Designed by GR061116	Designation
File FILTER DRAIN_1.4M_DEEP.SRCX	Checked by	Dialilage
XP Solutions	Source Control 2017.1.2	

Storm Event	Max Level (m)	-	Max Infiltration (1/s)				Status
7200 min Winter	4.652	0.052	0.0	1.6	1.6	0.1	ОК
8640 min Winter	4.649	0.049	0.0	1.4	1.4	0.1	O K
10080 min Winter	4.646	0.046	0.0	1.2	1.2	0.0	ОК

Storm Event				Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
7200	min W	/inter	0.964	0.0	262.4	3736	
8640	min W	<i>l</i> inter	0.839	0.0	273.9	4392	
10080	min W	linter	0.745	0.0	283.9	5000	

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 16:51	Designed by GR061116	Desipago
File FILTER DRAIN_1.4M_DEEP.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Rainfall Model FSR Winter Storms Yes
Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 0.270

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	3	0.090	3	6	0.090	6	9	0.090

CH2M		Page 5
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 16:51	Designed by GR061116	Desinago
File FILTER DRAIN_1.4M_DEEP.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Storage is Online Cover Level (m) 6.000

Filter Drain Structure

```
Infiltration Coefficient Base (m/hr) 0.00000 Pipe Diameter (m) 0.150
Infiltration Coefficient Side (m/hr) 0.00000 Pipe Depth above Invert (m) 0.000

Safety Factor 2.0 Slope (1:X) 200.0

Porosity 0.30 Cap Volume Depth (m) 0.000

Invert Level (m) 4.600 Cap Infiltration Depth (m) 0.000

Trench Width (m) 0.5 Number of Pipes 1

Trench Length (m) 100.0
```

Pipe Outflow Control

Diameter (m) 0.150 Entry Loss Coefficient 0.500 Slope (1:X) 100.0 Coefficient of Contraction 0.600 Length (m) 10.000 Upstream Invert Level (m) 4.600 Roughness k (mm) 0.600

CH2M		Page 1
Ash House		
Falcon Road		4.
Exeter EX2 7LB		Micco
Date 22/05/2018 16:53	Designed by GR061116	Designation
File FILTER DRAIN_1.4M_DEEP.SRCX	Checked by	Dialilage
XP Solutions	Source Control 2017.1.2	

Half Drain Time : 6 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	${\tt Infiltration}$	Control	$\Sigma \ \text{Outflow}$	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	6.002	1.402	0.0	49.3	49.3	20.5	FLOOD
30	min	Summer	6.004	1.404	0.0	49.3	49.3	22.6	FLOOD
60	min	Summer	6.001	1.401	0.0	49.2	49.2	19.5	FLOOD
120	min	Summer	5.656	1.056	0.0	42.5	42.5	13.3	O K
180	min	Summer	5.373	0.773	0.0	36.0	36.0	9.1	O K
240	min	Summer	5.188	0.588	0.0	31.0	31.0	6.3	O K
360	min	Summer	4.997	0.397	0.0	24.9	24.9	3.2	O K
480	min	Summer	4.892	0.292	0.0	20.8	20.8	1.8	O K
600	min	Summer	4.829	0.229	0.0	17.8	17.8	1.2	O K
720	min	Summer	4.798	0.198	0.0	15.7	15.7	0.9	O K
960	min	Summer	4.770	0.170	0.0	12.6	12.6	0.7	O K
1440	min	Summer	4.739	0.139	0.0	9.2	9.2	0.4	O K
2160	min	Summer	4.715	0.115	0.0	6.7	6.7	0.3	O K
2880	min	Summer	4.698	0.098	0.0	5.4	5.4	0.2	O K
4320	min	Summer	4.682	0.082	0.0	3.9	3.9	0.2	O K
5760	min	Summer	4.675	0.075	0.0	3.2	3.2	0.1	O K
7200	min	Summer	4.669	0.069	0.0	2.6	2.6	0.1	O K

	Storm Event		Rain	Flooded	Discharge	Time-Peak (mins)	
			(mm/hr)	Volume	Volume		
				(m³)	(m³)		
15	min	Summer	103.597	2.0	52.4	16	
30	min	Summer	69.587	4.1	70.5	24	
60	min	Summer	44.560	1.0	90.2	40	
120	min	Summer	27.503	0.0	111.4	70	
180	min	Summer	20.407	0.0	124.0	100	
240	min	Summer	16.403	0.0	132.9	130	
360	min	Summer	12.073	0.0	146.7	188	
480	min	Summer	9.697	0.0	157.1	248	
600	min	Summer	8.173	0.0	165.5	308	
720	min	Summer	7.104	0.0	172.6	366	
960	min	Summer	5.689	0.0	184.3	486	
1440	min	Summer	4.152	0.0	201.8	734	
2160	min	Summer	3.023	0.0	220.4	1076	
2880	min	Summer	2.411	0.0	234.3	1456	
4320	min	Summer	1.749	0.0	255.0	2140	
5760	min	Summer	1.391	0.0	270.4	2840	
7200	min	Summer	1.166	0.0	283.2	3544	

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 16:53	Designed by GR061116	Desipago
File FILTER DRAIN_1.4M_DEEP.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status	
8640	min Sur	mmer	4.663	0.063	0.0	2.3	2.3	0.1	ОК
10080	min Sur	mmer	4.659	0.059	0.0	2.0	2.0	0.1	O K
15	min Wi	nter	6.006	1.406	0.0	49.3	49.3	24.3	FLOOD
30	min Wi	nter	6.007	1.407	0.0	49.4	49.4	25.6	FLOOD
60	min Wi	nter	6.000	1.400	0.0	49.2	49.2	18.9	FLOOD
120	min Wi	nter	5.467	0.867	0.0	38.3	38.3	10.5	O K
180	min Wi	nter	5.166	0.566	0.0	30.4	30.4	5.9	O K
240	min Wi	nter	5.010	0.410	0.0	25.4	25.4	3.3	O K
360	min Wi	nter	4.855	0.255	0.0	19.1	19.1	1.4	O K
480	min Wi	nter	4.796	0.196	0.0	15.4	15.4	0.9	O K
600	min Wi	nter	4.774	0.174	0.0	13.0	13.0	0.7	O K
720	min Wi	nter	4.759	0.159	0.0	11.4	11.4	0.6	O K
960	min Wi	nter	4.739	0.139	0.0	9.1	9.1	0.4	O K
1440	min Wi	nter	4.714	0.114	0.0	6.6	6.6	0.3	O K
2160	min Wi	nter	4.692	0.092	0.0	4.9	4.9	0.2	O K
2880	min Wi	nter	4.681	0.081	0.0	3.9	3.9	0.2	O K
4320	min Wi	nter	4.672	0.072	0.0	2.9	2.9	0.1	O K
5760	min Wi	nter	4.663	0.063	0.0	2.3	2.3	0.1	O K

Storm Event			Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
8640	min	Summer	1.009	0.0	294.3	4344
10080	min	Summer	0.893	0.0	303.9	5096
15	min	Winter	103.597	5.7	58.7	17
30	min	Winter	69.587	7.0	78.9	25
60	min	Winter	44.560	0.4	101.1	40
120	min	Winter	27.503	0.0	124.8	72
180	min	Winter	20.407	0.0	138.9	102
240	min	Winter	16.403	0.0	148.8	130
360	min	Winter	12.073	0.0	164.3	188
480	min	Winter	9.697	0.0	175.9	244
600	min	Winter	8.173	0.0	185.4	306
720	min	Winter	7.104	0.0	193.4	364
960	min	Winter	5.689	0.0	206.4	484
1440	min	Winter	4.152	0.0	226.0	732
2160	min	Winter	3.023	0.0	246.8	1096
2880	min	Winter	2.411	0.0	262.4	1444
4320	min	Winter	1.749	0.0	285.6	2100
5760	min	Winter	1.391	0.0	302.9	2784

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 16:53	Designed by GR061116	Desipago
File FILTER DRAIN_1.4M_DEEP.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)			Max Volume (m³)	Status
7200	min W	inter	4.657	0.057	0.0	1.9	1.9	0.1	ОК
8640	min W	inter	4.653	0.053	0.0	1.6	1.6	0.1	O K
10080	min W	inter	4.650	0.050	0.0	1.4	1.4	0.1	ОК

	Storm Event			Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
7200	min V	Vinter	1.166	0.0	317.2	3640
8640	min V	Vinter	1.009	0.0	329.6	4296
10080	min W	Vinter	0.893	0.0	340.4	4968

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 16:53	Designed by GR061116	Desipago
File FILTER DRAIN_1.4M_DEEP.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Rainfall Details

Rainfall Model FSR Winter Storms Yes
Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 0.270

				(mins)				
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	3	0.090	3	6	0.090	6	9	0.090

CH2M		Page 5
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 16:53	Designed by GR061116	Desipago
File FILTER DRAIN_1.4M_DEEP.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 6.000

Filter Drain Structure

```
Infiltration Coefficient Base (m/hr) 0.00000 Pipe Diameter (m) 0.150
Infiltration Coefficient Side (m/hr) 0.00000 Pipe Depth above Invert (m) 0.000

Safety Factor 2.0 Slope (1:X) 200.0

Porosity 0.30 Cap Volume Depth (m) 0.000

Invert Level (m) 4.600 Cap Infiltration Depth (m) 0.000

Trench Width (m) 0.5 Number of Pipes 1

Trench Length (m) 100.0
```

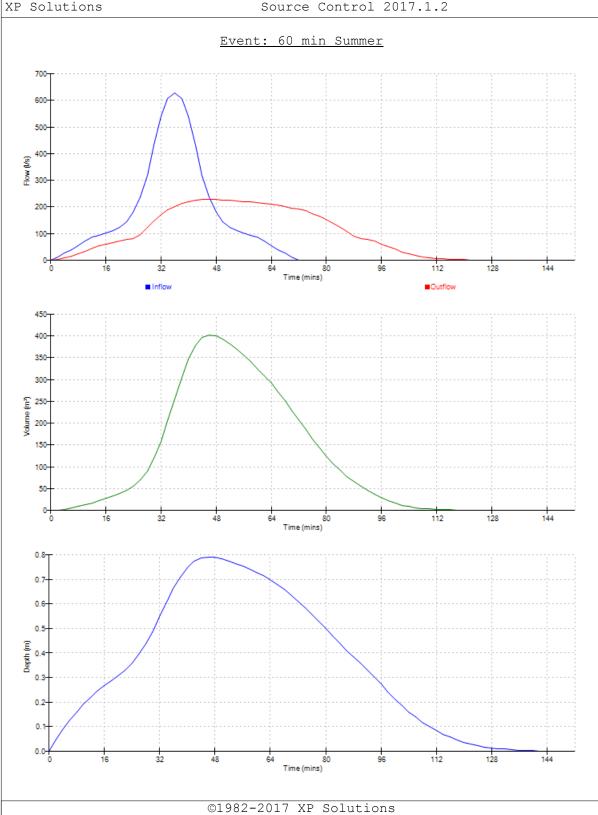
Pipe Outflow Control

Diameter (m) 0.150 Entry Loss Coefficient 0.500 Slope (1:X) 100.0 Coefficient of Contraction 0.600 Length (m) 10.000 Upstream Invert Level (m) 4.600 Roughness k (mm) 0.600

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/05/2018 13:49	Designed by MA047950	Desipago
File DITCH_A_2018-05-24.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017 1 2	•

Half Drain Time : 20 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltration	Control	$\boldsymbol{\Sigma}$ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
						0.1.5	0.4.5		
			6.696		0.0	215.5			Flood Risk
			6.751		0.0	226.2	226.2		Flood Risk
60	min Sı	ummer	6.760	0.790	0.0	227.9	227.9	403.1	Flood Risk
120	min Sı	ummer	6.725	0.755	0.0	221.1	221.1	357.6	Flood Risk
180	min Sı	ummer	6.679	0.709	0.0	211.9	211.9	303.6	Flood Risk
240	min S	ummer	6.633	0.663	0.0	202.5	202.5	256.0	O K
360	min S	ummer	6.558	0.588	0.0	185.8	185.8	188.4	O K
480	min Sı	ummer	6.505	0.535	0.0	167.2	167.2	148.3	O K
600	min S	ummer	6.466	0.496	0.0	150.7	150.7	122.5	O K
720	min S	ummer	6.436	0.466	0.0	136.8	136.8	104.8	O K
960	min S	ummer	6.395	0.425	0.0	115.1	115.1	83.3	O K
1440	min S	ummer	6.337	0.367	0.0	81.7	81.7	58.2	O K
2160	min S	ummer	6.254	0.284	0.0	64.8	64.8	31.5	O K
2880	min Sı	ummer	6.214	0.244	0.0	52.4	52.4	22.1	O K
4320	min Sı	ummer	6.174	0.204	0.0	38.6	38.6	14.7	O K
5760	min S	ummer	6.156	0.186	0.0	31.0	31.0	11.8	ОК
7200	min Si	ummer	6.144	0.174	0.0	26.1	26.1	10.2	ОК
8640	min Sı	ummer	6.130	0.160	0.0	22.6	22.6	8.4	O K
			6.119		0.0	20.1	20.1	7.2	O K
			6.735		0.0	223.1			Flood Risk
			6.793		0.0	234.0	234.0		Flood Risk


	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	79.950	0.0	494.7	20
30	min	Summer	53.199	0.0	658.3	30
60	min	Summer	33.892	0.0	838.8	46
120	min	Summer	20.940	0.0	1036.5	80
180	min	Summer	15.610	0.0	1159.1	110
240	min	Summer	12.614	0.0	1248.8	142
360	min	Summer	9.343	0.0	1387.4	200
480	min	Summer	7.540	0.0	1492.9	260
600	min	Summer	6.381	0.0	1579.2	318
720	min	Summer	5.565	0.0	1652.8	378
960	min	Summer	4.481	0.0	1774.6	496
1440	min	Summer	3.298	0.0	1959.1	746
2160	min	Summer	2.424	0.0	2159.6	1100
2880	min	Summer	1.946	0.0	2312.2	1468
4320	min	Summer	1.427	0.0	2542.7	2188
5760	min	Summer	1.144	0.0	2717.9	2928
7200	min	Summer	0.964	0.0	2863.2	3576
8640	min	Summer	0.839	0.0	2988.4	4368
10080	min	Summer	0.745	0.0	3098.6	5120
15	min	Winter	79.950	0.0	554.1	21
30	min	Winter	53.199	0.0	737.3	31
		©198	2-2017	XP Sol	lutions	

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 25/05/2018 13:49	Designed by MA047950	Desipago
File DITCH_A_2018-05-24.SRCX	Checked by	Drail laye
XP Solutions	Source Control 2017.1.2	•

	Storm Event			-	Max Infiltration (1/s)		Max Σ Outflow (1/s)		Status
			(m)	(m)	(1/S)	(1/s)	(1/S)	(m³)	
60	min Wir	nter	6.794	0.824	0.0	234.2	234.2	449.2	Flood Risk
120	min Wir	nter	6.734	0.764	0.0	222.8	222.8	368.7	Flood Risk
180	min Wir	nter	6.662	0.692	0.0	208.4	208.4	285.1	O K
240	min Wir	nter	6.595	0.625	0.0	194.1	194.1	219.6	O K
360	min Wir	nter	6.501	0.531	0.0	165.4	165.4	145.2	O K
480	min Wir	nter	6.443	0.473	0.0	140.1	140.1	108.8	O K
600	min Wir	nter	6.406	0.436	0.0	121.3	121.3	88.8	O K
720	min Wir	nter	6.381	0.411	0.0	106.7	106.7	76.9	O K
960	min Wir	nter	6.348	0.378	0.0	83.7	83.7	62.5	O K
1440	min Wir	nter	6.251	0.281	0.0	64.0	64.0	30.8	O K
2160	min Wir	nter	6.197	0.227	0.0	47.2	47.2	18.7	O K
2880	min Wir	nter	6.173	0.203	0.0	38.0	38.0	14.4	O K
4320	min Wir	nter	6.148	0.178	0.0	27.9	27.9	10.8	O K
5760	min Wir	nter	6.128	0.158	0.0	22.3	22.3	8.3	O K
7200	min Wir	nter	6.114	0.144	0.0	18.8	18.8	6.6	O K
8640	min Wir	nter	6.104	0.134	0.0	16.4	16.4	5.7	O K
10080	min Wir	nter	6.096	0.126	0.0	14.6	14.6	5.0	O K

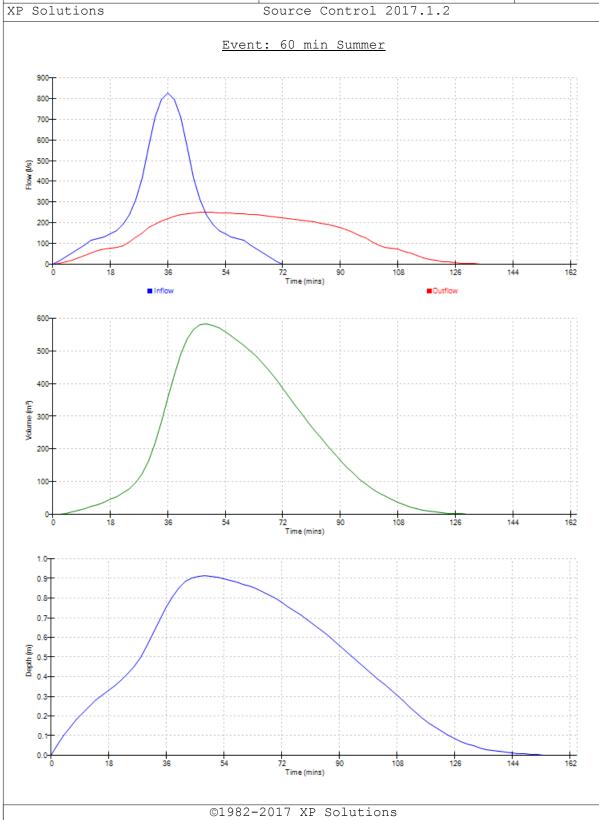
Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	33.892	0.0	939.5	50
120	min	Winter	20.940	0.0	1160.9	84
180	min	Winter	15.610	0.0	1298.1	116
240	min	Winter	12.614	0.0	1398.6	146
360	min	Winter	9.343	0.0	1553.9	202
480	min	Winter	7.540	0.0	1672.1	260
600	min	Winter	6.381	0.0	1768.7	318
720	min	Winter	5.565	0.0	1851.1	378
960	min	Winter	4.481	0.0	1987.5	514
1440	min	Winter	3.298	0.0	2194.2	738
2160	min	Winter	2.424	0.0	2418.7	1100
2880	min	Winter	1.946	0.0	2589.6	1472
4320	min	Winter	1.427	0.0	2847.8	2176
5760	min	Winter	1.144	0.0	3044.1	2848
7200	min	Winter	0.964	0.0	3206.8	3624
8640	min	Winter	0.839	0.0	3347.1	4336
10080	min	Winter	0.745	0.0	3470.5	5120

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/05/2018 13:49	Designed by MA047950	Desipago
File DITCH_A_2018-05-24.SRCX	Checked by	Dialilage
YP Solutions	Source Control 2017 1 2	•

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/05/2018 13:50	Designed by MA047950	Desipado
File DITCH_A_2018-05-24.SRCX	Checked by	Drainage
XP Solutions	Source Control 2017.1.2	•

Half Drain Time : 28 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(1/s)	(1/s)	(m³)	
		_							
		Summer			0.0		233.9		Flood Risk
		Summer			0.0		246.5		Flood Risk
60	min S	Summer	6.883	0.913	0.0	250.1	250.1	583.1	Flood Risk
120	min S	Summer	6.853	0.883	0.0	244.8	244.8	535.6	Flood Risk
180	min S	Summer	6.806	0.836	0.0	236.4	236.4	465.7	Flood Risk
240	min S	Summer	6.757	0.787	0.0	227.3	227.3	398.9	Flood Risk
360	min S	Summer	6.673	0.703	0.0	210.8	210.8	297.4	Flood Risk
480	min S	Summer	6.603	0.633	0.0	195.9	195.9	226.9	O K
600	min S	Summer	6.547	0.577	0.0	183.2	183.2	179.6	O K
720	min S	Summer	6.507	0.537	0.0	167.8	167.8	149.5	O K
960	min S	Summer	6.449	0.479	0.0	143.2	143.2	112.5	O K
1440	min S	Summer	6.386	0.416	0.0	109.8	109.8	79.1	O K
2160	min S	Summer	6.311	0.341	0.0	78.8	78.8	48.8	O K
2880	min S	Summer	6.254	0.284	0.0	64.8	64.8	31.5	O K
4320	min S	Summer	6.197	0.227	0.0	47.2	47.2	18.7	O K
5760	min S	Summer	6.172	0.202	0.0	37.6	37.6	14.3	O K
7200	min S	Summer	6.157	0.187	0.0	31.4	31.4	12.0	ОК
8640	min S	Summer	6.147	0.177	0.0	27.3	27.3	10.6	ОК
10080	min S	Summer	6.136	0.166	0.0	24.1	24.1	9.2	O K
		Jinter			0.0		241.7		Flood Risk
		/inter			0.0		255.1		Flood Risk
50					0.0	200.1	200.1	001.0	


Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	103.597	0.0	641.0	21
30	min	Summer	69.587	0.0	861.1	31
60	min	Summer	44.560	0.0	1102.9	48
120	min	Summer	27.503	0.0	1361.4	82
180	min	Summer	20.407	0.0	1515.2	114
240	min	Summer	16.403	0.0	1623.9	144
360	min	Summer	12.073	0.0	1792.8	206
480	min	Summer	9.697	0.0	1919.9	264
600	min	Summer	8.173	0.0	2022.9	322
720	min	Summer	7.104	0.0	2110.0	380
960	min	Summer	5.689	0.0	2252.9	498
1440	min	Summer	4.152	0.0	2466.2	736
2160	min	Summer	3.023	0.0	2693.7	1108
2880	min	Summer	2.411	0.0	2864.0	1468
4320	min	Summer	1.749	0.0	3116.7	2188
5760	min	Summer	1.391	0.0	3305.3	2904
7200	min	Summer	1.166	0.0	3461.6	3664
8640	min	Summer	1.009	0.0	3596.4	4400
10080	min	Summer	0.893	0.0	3714.5	5088
15	min	Winter	103.597	0.0	717.9	21
30	min	Winter	69.587	0.0	964.5	32
		©198	2-2017	XP Sol	Lutions	

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 25/05/2018 13:50	Designed by MA047950	Desipago
File DITCH_A_2018-05-24.SRCX	Checked by	Drail laye
XP Solutions	Source Control 2017.1.2	

	Storm Event	Max Level	Max Depth	Max Infiltration	Max Control	Max Σ Outflow	Max Volume	Status
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
60	min Win	ter 6.929	0.959	0.0	257.8	257.8	658.7	Flood Risk
120	min Win	er 6.877	0.907	0.0	248.9	248.9	572.9	Flood Risk
180	min Win	ter 6.804	0.834	0.0	236.0	236.0	462.8	Flood Risk
240	min Win	er 6.732	0.762	0.0	222.5	222.5	366.6	Flood Risk
360	min Win	er 6.611	0.641	0.0	197.6	197.6	234.4	O K
480	min Win	er 6.525	0.555	0.0	175.0	175.0	162.6	O K
600	min Win	cer 6.470	0.500	0.0	152.7	152.7	125.3	O K
720	min Win	er 6.432	0.462	0.0	135.1	135.1	102.9	O K
960	min Win	er 6.386	0.416	0.0	109.8	109.8	79.2	O K
1440	min Win	cer 6.313	0.343	0.0	79.4	79.4	49.6	O K
2160	min Win	cer 6.234	0.264	0.0	58.8	58.8	26.7	O K
2880	min Win	er 6.196	0.226	0.0	47.0	47.0	18.5	O K
4320	min Win	er 6.163	0.193	0.0	34.1	34.1	12.9	O K
5760	min Win	er 6.146	0.176	0.0	27.1	27.1	10.5	O K
7200	min Win	er 6.130	0.160	0.0	22.8	22.8	8.5	O K
8640	min Win	er 6.117	0.147	0.0	19.6	19.6	7.0	O K
10080	min Win	er 6.108	0.138	0.0	17.5	17.5	6.1	O K

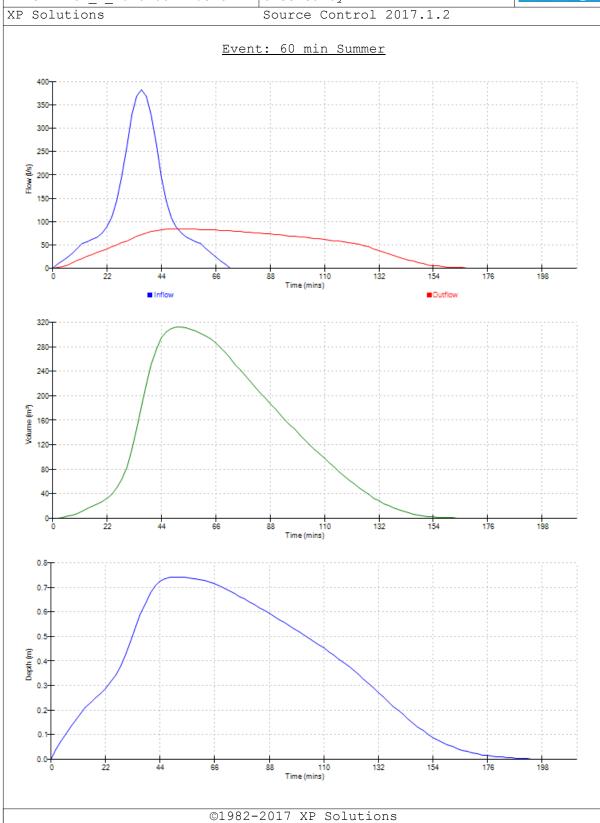
Storm		Rain	Flooded	Discharge	Time-Peak		
		Even	t	(mm/hr)	Volume	Volume	(mins)
					(m³)	(m³)	
	60	min	Winter	44.560	0.0	1235.2	50
	120	min	Winter	27.503	0.0	1524.8	86
	180	min	Winter	20.407	0.0	1697.1	120
	240	min	Winter	16.403	0.0	1818.8	152
	360	min	Winter	12.073	0.0	2008.0	210
	480	min	Winter	9.697	0.0	2150.3	266
	600	min	Winter	8.173	0.0	2265.6	324
	720	min	Winter	7.104	0.0	2363.2	380
	960	min	Winter	5.689	0.0	2523.2	498
	1440	min	Winter	4.152	0.0	2762.1	752
	2160	min	Winter	3.023	0.0	3016.9	1104
	2880	min	Winter	2.411	0.0	3207.7	1464
	4320	min	Winter	1.749	0.0	3490.7	2168
	5760	min	Winter	1.391	0.0	3701.9	2856
	7200	min	Winter	1.166	0.0	3877.0	3648
	8640	min	Winter	1.009	0.0	4028.0	4400
	10080	min	Winter	0.893	0.0	4160.3	5008

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/05/2018 13:50	Designed by MA047950	Desipodo
File DITCH_A_2018-05-24.SRCX	Checked by	Drail laye
VD Colutions	Source Control 2017 1 2	•

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/05/2018 13:47	Designed by MA047950	Desipago
File DITCH_D_2018-05-24.SRCX	Checked by	Drainage
XP Solutions	Source Control 2017.1.2	•

Half Drain Time : 39 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltratio	n Control	Σ Outflo	w Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min Su	ummer	6.481	0.651	0.	77.5	77.	5 231.2	O K
30	min Su	ummer	6.546	0.716	0.	82.1	82.	1 287.5	Flood Risk
60	min Su	ummer	6.573	0.743	0.	83.9	83.	9 312.0	Flood Risk
120	min Su	ummer	6.564	0.734	0.	83.3	83.	3 303.4	Flood Risk
180	min Su	ummer	6.538	0.708	0.	81.6	81.	6 280.1	Flood Risk
240	min Su	ummer	6.509	0.679	0.	79.6	79.	6 255.0	O K
360	min Su	ummer	6.455	0.625	0.	75.6	75.	6 210.5	O K
480	min Su	ummer	6.405	0.575	0.	71.8	71.	8 173.5	O K
600	min Su	ummer	6.360	0.530	0.	0 68.3	68.	3 143.5	O K
720	min Su	ummer	6.321	0.491	0.	0 65.0	65.	0 119.4	O K
960	min Su	ummer	6.257	0.427	0.	59.2	59.	2 84.5	O K
1440	min Su	ummer	6.168	0.338	0.	50.0	50.	0 47.9	O K
2160	min Su	ummer	6.107	0.277	0.	39.1	39.	1 29.8	O K
2880	min Su	ummer	6.071	0.241	0.	31.8	31.	8 21.6	O K
4320	min Su	ummer	6.030	0.200	0.	23.4	23.	4 13.9	O K
5760	min Su	ummer	6.005	0.175	0.	18.8	18.	8 10.3	O K
7200	min Su	ummer	5.985	0.155	0.	15.8	15.	8 7.8	O K
8640	min Su	ummer	5.971	0.141	0.	13.8	13.	8 6.3	O K
10080	min Su	ummer	5.960	0.130	0.	12.2	12.	2 5.4	O K
15	min Wi	nter	6.519	0.689	0.	80.3	80.	3 263.5	O K
30	min Wi	nter	6.591	0.761	0.	85.1	85.	1 329.3	Flood Risk


Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	79.950	0.0	301.3	22
30	min	Summer	53.199	0.0	401.0	32
60	min	Summer	33.892	0.0	510.9	50
120	min	Summer	20.940	0.0	631.3	84
180	min	Summer	15.610	0.0	706.0	118
240	min	Summer	12.614	0.0	760.6	152
360	min	Summer	9.343	0.0	845.0	216
480	min	Summer	7.540	0.0	909.3	278
600	min	Summer	6.381	0.0	961.9	338
720	min	Summer	5.565	0.0	1006.7	398
960	min	Summer	4.481	0.0	1080.9	514
1440	min	Summer	3.298	0.0	1193.3	746
2160	min	Summer	2.424	0.0	1315.4	1104
2880	min	Summer	1.946	0.0	1408.3	1468
4320	min	Summer	1.427	0.0	1548.7	2200
5760	min	Summer	1.144	0.0	1655.5	2912
7200	min	Summer	0.964	0.0	1744.0	3608
8640	min	Summer	0.839	0.0	1820.2	4384
10080	min	Summer	0.745	0.0	1887.3	5136
15	min	Winter	79.950	0.0	337.5	22
30	min	Winter	53.199	0.0	449.1	33
		©198	2-2017	XP Sol	Lutions	

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 25/05/2018 13:47	Designed by MA047950	Desipago
File DITCH_D_2018-05-24.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	•

	Storm Event		-	Max Infiltration				Status
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
60	min Winte	er 6.620	0.790	0.0	87.0	87.0	358.1	Flood Risk
120	min Winte	er 6.602	0.772	0.0	85.8	85.8	339.7	Flood Risk
180	min Winte	er 6.562	0.732	0.0	83.2	83.2	301.5	Flood Risk
240	min Winte	er 6.518	0.688	0.0	80.1	80.1	262.4	O K
360	min Winte	er 6.436	0.606	0.0	74.3	74.3	196.6	O K
480	min Winte	er 6.365	0.535	0.0	68.7	68.7	146.4	O K
600	min Winte	er 6.304	0.474	0.0	63.5	63.5	109.3	O K
720	min Winte	er 6.253	0.423	0.0	58.9	58.9	82.4	O K
960	min Winte	er 6.175	0.345	0.0	50.8	50.8	50.3	O K
1440	min Winte	er 6.105	0.275	0.0	38.8	38.8	29.4	O K
2160	min Winte	er 6.056	0.226	0.0	28.7	28.7	18.6	O K
2880	min Winte	er 6.028	0.198	0.0	23.1	23.1	13.7	O K
4320	min Winte	er 5.992	0.162	0.0	16.9	16.9	8.7	O K
5760	min Winte	er 5.969	0.139	0.0	13.6	13.6	6.2	O K
7200	min Winte	er 5.956	0.126	0.0	11.5	11.5	5.0	O K
8640	min Winte	er 5.948	0.118	0.0	9.9	9.9	4.4	O K
10080	min Winte	er 5.943	0.113	0.0	8.9	8.9	3.9	O K

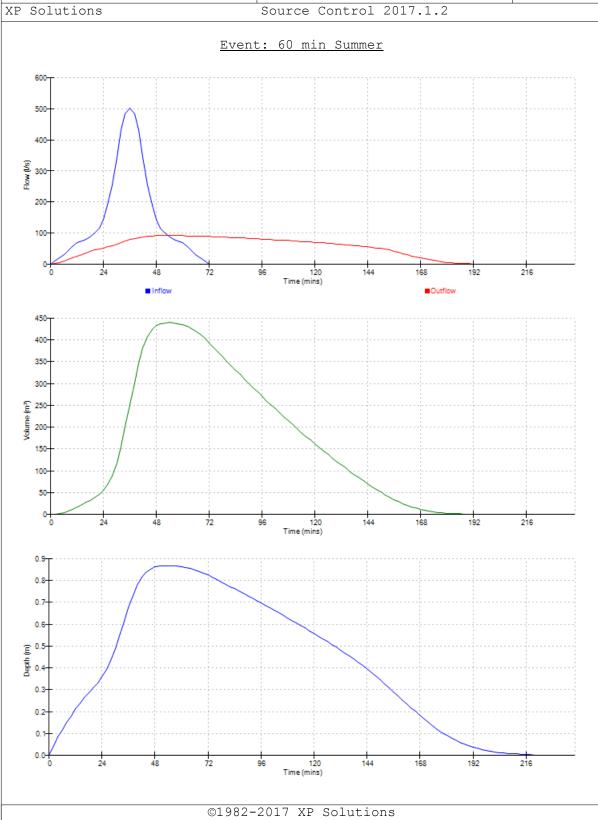
Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	33.892	0.0	572.2	54
120	min	Winter	20.940	0.0	707.1	92
180	min	Winter	15.610	0.0	790.7	128
240	min	Winter	12.614	0.0	851.9	162
360	min	Winter	9.343	0.0	946.4	226
480	min	Winter	7.540	0.0	1018.4	288
600	min	Winter	6.381	0.0	1077.3	348
720	min	Winter	5.565	0.0	1127.5	404
960	min	Winter	4.481	0.0	1210.6	514
1440	min	Winter	3.298	0.0	1336.5	742
2160	min	Winter	2.424	0.0	1473.2	1104
2880	min	Winter	1.946	0.0	1577.3	1468
4320	min	Winter	1.427	0.0	1734.6	2200
5760	min	Winter	1.144	0.0	1854.1	2872
7200	min	Winter	0.964	0.0	1953.2	3568
8640	min	Winter	0.839	0.0	2038.7	4400
10080	min	Winter	0.745	0.0	2113.8	4960

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/05/2018 13:47	Designed by MA047950	Desipago
File DITCH_D_2018-05-24.SRCX	Checked by	Drail laye
VD Calastiana	C	•

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/05/2018 13:44	Designed by MA047950	Desinado
File DITCH_D_2018-05-24.SRCX	Checked by	Drainage
XP Solutions	Source Control 2017.1.2	

Half Drain Time : 51 minutes.

	Storm		Max	Max	Max		Max	Ma	x	Max	Status
	Event		Level	Depth	Infiltratio	on (Control	Σ Out	flow	Volume	
			(m)	(m)	(1/s)		(1/s)	(1/	s)	(m³)	
		ummer				.0	83.9		83.9		Flood Risk
		ummer		0.827		.0	89.3		89.3		Flood Risk
60	min S	ummer	6.698	0.868	0.	.0	91.8		91.8	440.0	Flood Risk
120	min S	ummer	6.696	0.866	0.	.0	91.7		91.7	438.4	Flood Risk
180	min S	ummer	6.671	0.841	0.	.0	90.2		90.2	411.2	Flood Risk
240	min S	ummer	6.641	0.811	0.	.0	88.3		88.3	379.4	Flood Risk
360	min S	ummer	6.585	0.755	0.	.0	84.7		84.7	322.9	Flood Risk
480	min S	ummer	6.531	0.701	0.	.0	81.1		81.1	273.8	Flood Risk
600	min S	ummer	6.482	0.652	0.	.0	77.6		77.6	232.3	O K
720	min S	ummer	6.438	0.608	0.	.0	74.4		74.4	197.6	O K
960	min S	ummer	6.362	0.532	0.	.0	68.4		68.4	144.4	O K
1440	min S	ummer	6.251	0.421	0.	.0	58.7		58.7	81.5	O K
2160	min S	ummer	6.152	0.322	0.	.0	48.0		48.0	42.6	O K
2880	min S	ummer	6.108	0.278	0.	.0	39.3		39.3	30.0	O K
4320	min S	ummer	6.056	0.226	0.	.0	28.7		28.7	18.6	O K
5760	min S	ummer	6.027	0.197	0.	.0	22.8		22.8	13.5	O K
7200	min S	ummer	6.008	0.178	0.	.0	19.2		19.2	10.7	O K
8640	min S	ummer	5.990	0.160	0.	.0	16.6		16.6	8.4	O K
10080	min S	ummer	5.977	0.147	0.	.0	14.7		14.7	7.0	O K
15	min W	linter	6.617	0.787	0.	.0	86.8		86.8	354.5	Flood Risk
30	min W	linter	6.709	0.879	0.	.0	92.5		92.5	452.4	Flood Risk


Storm Event		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	103.597	0.0	390.4	22
30	min	Summer	69.587	0.0	524.5	33
60	min	Summer	44.560	0.0	671.7	54
120	min	Summer	27.503	0.0	829.2	88
180	min	Summer	20.407	0.0	922.9	122
240	min	Summer	16.403	0.0	989.1	156
360	min	Summer	12.073	0.0	1092.0	220
480	min	Summer	9.697	0.0	1169.4	284
600	min	Summer	8.173	0.0	1232.1	346
720	min	Summer	7.104	0.0	1285.2	406
960	min	Summer	5.689	0.0	1372.2	524
1440	min	Summer	4.152	0.0	1502.1	758
2160	min	Summer	3.023	0.0	1640.7	1108
2880	min	Summer	2.411	0.0	1744.4	1468
4320	min	Summer	1.749	0.0	1898.4	2200
5760	min	Summer	1.391	0.0	2013.2	2912
7200	min	Summer	1.166	0.0	2108.5	3664
8640	min	Summer	1.009	0.0	2190.5	4400
10080	min	Summer	0.893	0.0	2262.5	5072
15	min	Winter	103.597	0.0	437.3	23
30	min	Winter	69.587	0.0	587.5	34

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/05/2018 13:44	Designed by MA047950	Desipago
File DITCH_D_2018-05-24.SRCX	Checked by	Drainage
XP Solutions	Source Control 2017.1.2	

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
60	min Wint	er 6.756	0.926	0.0	95.3	95.3	507.2	Flood Risk
120	min Wint	er 6.749	0.919	0.0	94.9	94.9	498.3	Flood Risk
180	min Wint	er 6.711	0.881	0.0	92.7	92.7	455.0	Flood Risk
240	min Wint	er 6.667	0.837	0.0	89.9	89.9	406.1	Flood Risk
360	min Wint	er 6.582	0.752	0.0	84.5	84.5	320.8	Flood Risk
480	min Wint	er 6.505	0.675	0.0	79.2	79.2	251.2	O K
600	min Wint	er 6.436	0.606	0.0	74.2	74.2	196.1	O K
720	min Wint	er 6.375	0.545	0.0	69.5	69.5	153.1	O K
960	min Wint	er 6.277	0.447	0.0	61.1	61.1	94.8	O K
1440	min Wint	er 6.154	0.324	0.0	48.3	48.3	43.4	O K
2160	min Wint	er 6.091	0.261	0.0	35.8	35.8	25.9	O K
2880	min Wint	er 6.056	0.226	0.0	28.6	28.6	18.5	O K
4320	min Wint	er 6.016	0.186	0.0	20.8	20.8	11.9	O K
5760	min Wint	er 5.989	0.159	0.0	16.5	16.5	8.4	O K
7200	min Wint	er 5.971	0.141	0.0	13.8	13.8	6.3	O K
8640	min Wint	er 5.959	0.129	0.0	12.0	12.0	5.2	O K
10080	min Wint	er 5.952	0.122	0.0	10.6	10.6	4.6	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Winter		0.0	752.4	58
120	min	Winter	27.503	0.0	928.7	94
180	min	Winter	20.407	0.0	1033.7	132
240	min	Winter	16.403	0.0	1107.8	166
360	min	Winter	12.073	0.0	1223.0	234
480	min	Winter	9.697	0.0	1309.7	298
600	min	Winter	8.173	0.0	1380.0	360
720	min	Winter	7.104	0.0	1439.4	418
960	min	Winter	5.689	0.0	1536.9	532
1440	min	Winter	4.152	0.0	1682.4	752
2160	min	Winter	3.023	0.0	1837.6	1104
2880	min	Winter	2.411	0.0	1953.8	1452
4320	min	Winter	1.749	0.0	2126.2	2168
5760	min	Winter	1.391	0.0	2254.8	2936
7200	min	Winter	1.166	0.0	2361.5	3600
8640	min	Winter	1.009	0.0	2453.4	4392
10080	min	Winter	0.893	0.0	2534.0	5016

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/05/2018 13:44	Designed by MA047950	Desipodo
File DITCH_D_2018-05-24.SRCX	Checked by	Dialilage
XP Solutions	Source Control 2017.1.2	

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:06	Designed by GR061116	Desinage
File COLLECTOR PIPE_B.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	3.323	1.543	651.1	29.4	ОК
30	min	Summer	3.466	1.686	686.5	32.7	ОК
60	min	Summer	3.255	1.475	633.6	27.8	ОК
120	min	Summer	2.752	0.972	484.5	16.4	ОК
180	min	Summer	2.517	0.737	389.5	11.0	O K
240	min	Summer	2.428	0.648	326.4	9.0	ОК
360	min	Summer	2.335	0.555	250.9	6.9	O K
480	min	Summer	2.261	0.481	205.5	5.2	O K
600	min	Summer	2.220	0.440	176.7	4.4	ОК
720	min	Summer	2.185	0.405	154.4	3.7	O K
960	min	Summer	2.127	0.347	124.7	2.7	O K
1440	min	Summer	2.069	0.289	91.8	1.8	O K
2160	min	Summer	2.033	0.253	67.3	1.4	O K
2880	min	Summer	2.008	0.228	54.1	1.1	O K
4320	min	Summer	1.972	0.192	39.9	0.8	O K
5760	min	Summer	1.953	0.173	32.5	0.6	O K
7200	min	Summer	1.939	0.159	27.1	0.5	O K
8640	min	Summer	1.927	0.147	23.5	0.5	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Ever	nt	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	79.950	0.0	509.7	15
30	min	Summer	53.199	0.0	678.3	23
60	min	Summer	33.892	0.0	864.3	38
120	min	Summer	20.940	0.0	1068.0	68
180	min	Summer	15.610	0.0	1194.2	96
240	min	Summer	12.614	0.0	1286.6	126
360	min	Summer	9.343	0.0	1429.4	186
480	min	Summer	7.540	0.0	1538.2	246
600	min	Summer	6.381	0.0	1627.1	306
720	min	Summer	5.565	0.0	1702.8	366
960	min	Summer	4.481	0.0	1828.4	486
1440	min	Summer	3.298	0.0	2018.5	718
2160	min	Summer	2.424	0.0	2225.0	1100
2880	min	Summer	1.946	0.0	2382.2	1424
4320	min	Summer	1.427	0.0	2619.8	2132
5760	min	Summer	1.144	0.0	2800.3	2856
7200	min	Summer	0.964	0.0	2950.0	3656
8640	min	Summer	0.839	0.0	3079.0	4384

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:06	Designed by GR061116	Desinado
File COLLECTOR PIPE_B.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Storm Event			Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
10080	min	Summer	1.917	0.137	20.8	0.4	ОК
15	min	Winter	3.653	1.873	730.2	36.8	ОК
30	min	Winter	3.694	1.914	739.4	37.7	ОК
60	min	Winter	3.118	1.338	596.7	24.7	ОК
120	min	Winter	2.541	0.761	403.9	11.6	ОК
180	min	Winter	2.402	0.622	307.2	8.4	ОК
240	min	Winter	2.334	0.554	250.4	6.9	O K
360	min	Winter	2.234	0.454	186.5	4.7	O K
480	min	Winter	2.178	0.398	150.8	3.6	O K
600	min	Winter	2.134	0.354	128.0	2.8	O K
720	min	Winter	2.102	0.322	111.6	2.3	O K
960	min	Winter	2.067	0.287	90.1	1.8	O K
1440	min	Winter	2.032	0.252	66.6	1.4	O K
2160	min	Winter	1.994	0.214	48.8	1.0	O K
2880	min	Winter	1.970	0.190	39.3	0.8	O K
4320	min	Winter	1.944	0.164	28.7	0.6	O K
5760	min	Winter	1.925	0.145	23.1	0.4	O K
7200	min	Winter	1.912	0.132	19.4	0.4	O K

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
10080	min	Summer	0.745	0.0	3192.5	5016
15	min	Winter	79.950	0.0	570.9	15
30	min	Winter	53.199	0.0	759.7	22
60	min	Winter	33.892	0.0	968.0	38
120	min	Winter	20.940	0.0	1196.1	66
180	min	Winter	15.610	0.0	1337.5	96
240	min	Winter	12.614	0.0	1441.0	128
360	min	Winter	9.343	0.0	1601.0	186
480	min	Winter	7.540	0.0	1722.8	248
600	min	Winter	6.381	0.0	1822.3	308
720	min	Winter	5.565	0.0	1907.2	368
960	min	Winter	4.481	0.0	2047.8	490
1440	min	Winter	3.298	0.0	2260.7	730
2160	min	Winter	2.424	0.0	2492.0	1096
2880	min	Winter	1.946	0.0	2668.1	1444
4320	min	Winter	1.427	0.0	2934.1	2144
5760	min	Winter	1.144	0.0	3136.3	2936
7200	min	Winter	0.964	0.0	3304.0	3488

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:06	Designed by GR061116	Designation
File COLLECTOR PIPE_B.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	•

Storm Event	Max Level (m)	-	Max Control (1/s)		Status
8640 min Winter 10080 min Winter			17.0 15.0	0.3	0 K 0 K

Storm Event		Rain Flooded		Discharge	Time-Peak	
		(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
8640	min Winter	0.839	0.0	3448.5	4384	
10080	min Winter	0.745	0.0	3575.6	5064	

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:06	Designed by GR061116	Desinado
File COLLECTOR PIPE_B.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Rainfall Details

Rainfall Model FSR Winter Storms Yes
Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 3.400

				(mins)				
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	1.140	4	8	1.130	8	12	1.130

CH2M		Page 5
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:06	Designed by GR061116	Desipage
File COLLECTOR PIPE_B.SRCX	Checked by	Dialilage
XP Solutions	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 6.000

Pipe Structure

Diameter (m) 0.525 Length (m) 222.466 Slope (1:X) 100.210 Invert Level (m) 1.780

Pipe Outflow Control

Diameter (m) 0.525 Entry Loss Coefficient 0.500 Slope (1:X) 100.0 Coefficient of Contraction 0.600 Length (m) 10.000 Upstream Invert Level (m) 1.780 Roughness k (mm) 0.600

CH2M		Page 1
Ash House		
Falcon Road		4.
Exeter EX2 7LB		Micco
Date 22/05/2018 17:07	Designed by GR061116	Desipago
File COLLECTOR PIPE_B.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	4.164	2.384	837.9	48.0	ОК
30	min	Summer	4.565	2.785	913.8	50.9	ОК
60	min	Summer	4.117	2.337	828.6	47.1	ОК
120	min	Summer	3.262	1.482	635.3	28.0	ОК
180	min	Summer	2.819	1.039	507.0	17.9	ОК
240	min	Summer	2.583	0.803	422.9	12.5	ОК
360	min	Summer	2.424	0.644	323.4	8.9	O K
480	min	Summer	2.349	0.569	264.6	7.2	ОК
600	min	Summer	2.311	0.531	226.5	6.4	ОК
720	min	Summer	2.249	0.469	197.1	5.0	O K
960	min	Summer	2.192	0.412	158.0	3.8	ОК
1440	min	Summer	2.109	0.329	115.4	2.4	O K
2160	min	Summer	2.058	0.278	83.9	1.7	O K
2880	min	Summer	2.033	0.253	66.9	1.4	O K
4320	min	Summer	1.994	0.214	48.8	1.0	O K
5760	min	Summer	1.969	0.189	38.9	0.8	O K
7200	min	Summer	1.954	0.174	32.9	0.7	O K
8640	min	Summer	1.943	0.163	28.3	0.6	O K

Storm		Rain	Flooded	Discharge	Time-Peak
Ever	nt	(mm/hr)	Volume	Volume	(mins)
			(m³)	(m³)	
min	Summer	103.597	0.0	660.5	15
min	Summer	69.587	0.0	887.3	22
min	Summer	44.560	0.0	1136.4	38
min	Summer	27.503	0.0	1402.7	68
min	Summer	20.407	0.0	1561.2	98
min	Summer	16.403	0.0	1673.2	126
min	Summer	12.073	0.0	1847.2	186
min	Summer	9.697	0.0	1978.1	246
min	Summer	8.173	0.0	2084.2	308
min	Summer	7.104	0.0	2173.9	366
min	Summer	5.689	0.0	2321.2	488
min	Summer	4.152	0.0	2540.9	720
min	Summer	3.023	0.0	2775.3	1100
min	Summer	2.411	0.0	2950.8	1424
min	Summer	1.749	0.0	3211.2	2196
min	Summer	1.391	0.0	3405.4	2888
min	Summer	1.166	0.0	3566.6	3608
min	Summer	1.009	0.0	3705.3	4344
	min	Event min Summer min Summer min Summer	Event (mm/hr) min Summer 103.597 min Summer 69.587 min Summer 44.560 min Summer 27.503 min Summer 16.403 min Summer 12.073 min Summer 9.697 min Summer 7.104 min Summer 5.689 min Summer 4.152 min Summer 3.023 min Summer 2.411 min Summer 1.749 min Summer 1.391 min Summer 1.166	Event (mm/hr) Volume (m³) min Summer 103.597 0.0 min Summer 69.587 0.0 min Summer 44.560 0.0 min Summer 27.503 0.0 min Summer 16.403 0.0 min Summer 12.073 0.0 min Summer 9.697 0.0 min Summer 7.104 0.0 min Summer 5.689 0.0 min Summer 4.152 0.0 min Summer 2.411 0.0 min Summer 1.749 0.0 min Summer 1.391 0.0 min Summer 1.166 0.0	Event (mm/hr) Volume (m³) Volume (m³) min Summer 103.597 0.0 660.5 min Summer 69.587 0.0 887.3 min Summer 44.560 0.0 1136.4 min Summer 27.503 0.0 1402.7 min Summer 20.407 0.0 1561.2 min Summer 16.403 0.0 1673.2 min Summer 9.697 0.0 1978.1 min Summer 8.173 0.0 2084.2 min Summer 7.104 0.0 2173.9 min Summer 5.689 0.0 2321.2 min Summer 4.152 0.0 2540.9 min Summer 3.023 0.0 2775.3 min Summer 2.411 0.0 2950.8 min Summer 1.749 0.0 3211.2 min Summer 1.391 0.0 3405.4 min Summer 1.391 0.0 3566.6

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:07	Designed by GR061116	Desinado
File COLLECTOR PIPE_B.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Storm Event			Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
10080	min	Summer	1.932	0.152	25.1	0.5	ОК
15	min	Winter	4.991	3.211	987.9	51.4	ОК
30	min	Winter	5.027	3.247	993.9	51.4	ОК
60	min	Winter	3.887	2.107	781.4	42.1	ОК
120	min	Winter	2.887	1.107	528.8	19.4	O K
180	min	Winter	2.536	0.756	400.9	11.5	O K
240	min	Winter	2.426	0.646	324.9	9.0	O K
360	min	Winter	2.325	0.545	241.0	6.7	O K
480	min	Winter	2.245	0.465	193.9	4.9	O K
600	min	Winter	2.202	0.422	164.1	4.0	O K
720	min	Winter	2.162	0.382	142.6	3.3	O K
960	min	Winter	2.107	0.327	114.1	2.3	O K
1440	min	Winter	2.057	0.277	83.6	1.7	O K
2160	min	Winter	2.024	0.244	60.8	1.3	O K
2880	min	Winter	1.994	0.214	48.6	1.0	O K
4320	min	Winter	1.960	0.180	35.1	0.7	O K
5760	min	Winter	1.942	0.162	28.1	0.6	O K
7200	min	Winter	1.927	0.147	23.5	0.5	O K

Storm		Rain	Flooded	Discharge	Time-Peak
	Event	(mm/hr)	Volume	Volume	(mins)
			(m³)	(m³)	
10080	min Summer	0.893	0.0	3827.1	5008
15	min Winter	103.597	0.0	739.7	13
30	min Winter	69.587	0.0	993.7	20
60	min Winter	44.560	0.0	1272.7	38
120	min Winter	27.503	0.0	1571.0	68
180	min Winter	20.407	0.0	1748.5	96
240	min Winter	16.403	0.0	1873.9	126
360	min Winter	12.073	0.0	2068.8	184
480	min Winter	9.697	0.0	2215.5	248
600	min Winter	8.173	0.0	2334.3	306
720	min Winter	7.104	0.0	2434.8	366
960	min Winter	5.689	0.0	2599.7	482
1440	min Winter	4.152	0.0	2845.8	732
2160	min Winter	3.023	0.0	3108.4	1072
2880	min Winter	2.411	0.0	3304.9	1460
4320	min Winter	1.749	0.0	3596.5	2212
5760	min Winter	1.391	0.0	3814.1	2888
7200	min Winter	1.166	0.0	3994.5	3608
600 720 960 1440 2160 2880 4320 5760	min Winter	8.173 7.104 5.689 4.152 3.023 2.411 1.749 1.391	0.0 0.0 0.0 0.0 0.0 0.0	2334.3 2434.8 2599.7 2845.8 3108.4 3304.9 3596.5 3814.1	3 3 4 7 10 14 22 28

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:07	Designed by GR061116	Desinado
File COLLECTOR PIPE_B.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Storm Event		Max Level (m)	-	Max Control (1/s)		Status	
8640	min	Winter	1.916	0.136	20.4	0.4	ОК
10080	min	Winter	1.908	0.128	18.1	0.4	O K

Storm		Rain Flooded		Discharge	Time-Peak	
Event		(mm/hr)		Volume	(mins)	
				(m³)	(m³)	
8640	min	Winter	1.009	0.0	4150.0	4272
10080	min	Winter	0.893	0.0	4286.3	5104

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:07	Designed by GR061116	Desipago
File COLLECTOR PIPE_B.SRCX	Checked by	Dialilage
XP Solutions	Source Control 2017.1.2	

Rainfall Details

Rainfall Model FSR Winter Storms Yes
Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 3.400

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	1.140	4	8	1.130	8	12	1.130

CH2M		Page 5
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:07	Designed by GR061116	Designation
File COLLECTOR PIPE_B.SRCX	Checked by	Dialilage
XP Solutions	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 6.000

Pipe Structure

Diameter (m) 0.525 Length (m) 222.466 Slope (1:X) 100.210 Invert Level (m) 1.780

Pipe Outflow Control

Diameter (m) 0.525 Entry Loss Coefficient 0.500 Slope (1:X) 100.0 Coefficient of Contraction 0.600 Length (m) 10.000 Upstream Invert Level (m) 1.780 Roughness k (mm) 0.600

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:08	Designed by GR061116	Desinado
File COLLECTOR PIPE_C.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	3.608	1.048	509.8	18.1	ОК
30	min	Summer	3.700	1.140	539.0	20.1	ОК
60	min	Summer	3.562	1.002	494.8	17.0	O K
120	min	Summer	3.283	0.723	380.4	10.7	ОК
180	min	Summer	3.177	0.617	303.5	8.3	O K
240	min	Summer	3.119	0.559	254.8	7.0	O K
360	min	Summer	3.026	0.466	195.0	4.9	O K
480	min	Summer	2.976	0.416	160.1	3.9	O K
600	min	Summer	2.932	0.372	137.5	3.1	O K
720	min	Summer	2.899	0.339	120.3	2.5	O K
960	min	Summer	2.857	0.297	97.2	1.9	O K
1440	min	Summer	2.819	0.259	71.4	1.4	O K
2160	min	Summer	2.784	0.224	52.6	1.1	O K
2880	min	Summer	2.758	0.198	42.2	0.8	O K
4320	min	Summer	2.730	0.170	31.3	0.6	O K
5760	min	Summer	2.712	0.152	25.1	0.5	O K
7200	min	Summer	2.699	0.139	21.3	0.4	O K
8640	min	Summer	2.688	0.128	18.3	0.4	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	79.950	0.0	397.3	15
30	min	Summer	53.199	0.0	528.7	22
60	min	Summer	33.892	0.0	673.7	38
120	min	Summer	20.940	0.0	832.4	66
180	min	Summer	15.610	0.0	930.8	96
240	min	Summer	12.614	0.0	1002.8	126
360	min	Summer	9.343	0.0	1114.1	186
480	min	Summer	7.540	0.0	1198.9	246
600	min	Summer	6.381	0.0	1268.2	306
720	min	Summer	5.565	0.0	1327.2	366
960	min	Summer	4.481	0.0	1425.1	484
1440	min	Summer	3.298	0.0	1573.2	734
2160	min	Summer	2.424	0.0	1734.2	1072
2880	min	Summer	1.946	0.0	1856.7	1432
4320	min	Summer	1.427	0.0	2041.9	2164
5760	min	Summer	1.144	0.0	2182.6	2888
7200	min	Summer	0.964	0.0	2299.3	3608
8640	min	Summer	0.839	0.0	2399.8	4352

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:08	Designed by GR061116	Desinado
File COLLECTOR PIPE_C.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

	Storm Event			Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
10080	min	Summer	2.682	0.122	16.4	0.3	ОК
15	min	Winter	3.814	1.254	572.9	22.7	ОК
30	min	Winter	3.845	1.285	581.7	23.4	O K
60	min	Winter	3.477	0.917	465.5	15.1	O K
120	min	Winter	3.192	0.632	314.9	8.6	O K
180	min	Winter	3.103	0.543	239.5	6.6	O K
240	min	Winter	3.026	0.466	195.0	4.9	O K
360	min	Winter	2.947	0.387	145.2	3.3	O K
480	min	Winter	2.894	0.334	117.7	2.4	O K
600	min	Winter	2.861	0.301	99.9	2.0	O K
720	min	Winter	2.842	0.282	87.0	1.7	O K
960	min	Winter	2.818	0.258	70.3	1.4	O K
1440	min	Winter	2.782	0.222	51.8	1.0	O K
2160	min	Winter	2.747	0.187	38.1	0.7	O K
2880	min	Winter	2.729	0.169	30.7	0.6	O K
4320	min	Winter	2.703	0.143	22.4	0.4	O K
5760	min	Winter	2.688	0.128	18.1	0.4	O K
7200	min	Winter	2.678	0.118	15.3	0.3	O K

Storm			Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
10080	min	Summer	0.745	0.0	2488.3	5112
15	min	Winter	79.950	0.0	444.9	15
30	min	Winter	53.199	0.0	592.1	22
60	min	Winter	33.892	0.0	754.4	38
120	min	Winter	20.940	0.0	932.2	66
180	min	Winter	15.610	0.0	1042.4	96
240	min	Winter	12.614	0.0	1123.1	126
360	min	Winter	9.343	0.0	1247.8	188
480	min	Winter	7.540	0.0	1342.7	246
600	min	Winter	6.381	0.0	1420.3	306
720	min	Winter	5.565	0.0	1486.5	370
960	min	Winter	4.481	0.0	1596.1	490
1440	min	Winter	3.298	0.0	1762.0	720
2160	min	Winter	2.424	0.0	1942.3	1076
2880	min	Winter	1.946	0.0	2079.5	1464
4320	min	Winter	1.427	0.0	2286.9	2212
5760	min	Winter	1.144	0.0	2444.5	2880
7200	min	Winter	0.964	0.0	2575.1	3672

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:08	Designed by GR061116	Desinado
File COLLECTOR PIPE_C.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Storm Event		Max Level (m)	-	Max Control (1/s)	Volume	Status	
8640	min	Winter	2.670	0.110	13.2	0.3	ОК
0080	min	Winter	2 663	0 103	11 7	0.2	O K

Storm Event		Rain Flooded (mm/hr) Volume (m³)		_	Time-Peak (mins)	
8640	min	Winter	0.839	0.0	2687.8	4280
10080	min	Winter	0.745	0.0	2786.9	5160

CH2M		Page 4
Ash House		
Falcon Road		4.
Exeter EX2 7LB		Micco
Date 22/05/2018 17:08	Designed by GR061116	Desipago
File COLLECTOR PIPE_C.SRCX	Checked by	Dialilage
XP Solutions	Source Control 2017.1.2	

Rainfall Details

Rainfall Model FSR Winter Storms Yes
Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 2.650

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.890	4	8	0.880	8	12	0.880

CH2M		Page 5
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:08	Designed by GR061116	Desinago
File COLLECTOR PIPE_C.SRCX	Checked by	Drainage
XP Solutions	Source Control 2017.1.2	•

Model Details

Storage is Online Cover Level (m) 6.000

Pipe Structure

Diameter (m) 0.525 Length (m) 144.000 Slope (1:X) 100.000 Invert Level (m) 2.560

Pipe Outflow Control

Diameter (m) 0.525 Entry Loss Coefficient 0.500 Slope (1:X) 100.0 Coefficient of Contraction 0.600 Length (m) 10.000 Upstream Invert Level (m) 2.560 Roughness k (mm) 0.600

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:08	Designed by GR061116	Desipago
File COLLECTOR PIPE_C.SRCX	Checked by	Dialilage
XP Solutions	Source Control 2017.1.2	•

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	4.134	1.574	658.8	29.7	ОК
30	min	Summer	4.337	1.777	708.0	32.4	O K
60	min	Summer	4.097	1.537	649.4	29.1	O K
120	min	Summer	3.566	1.006	496.0	17.1	O K
180	min	Summer	3.309	0.749	397.0	11.3	O K
240	min	Summer	3.213	0.653	330.5	9.1	O K
360	min	Summer	3.116	0.556	252.4	6.9	O K
480	min	Summer	3.042	0.482	206.2	5.3	O K
600	min	Summer	2.999	0.439	176.0	4.4	O K
720	min	Summer	2.964	0.404	153.7	3.6	O K
960	min	Summer	2.904	0.344	123.1	2.6	O K
1440	min	Summer	2.847	0.287	90.1	1.8	O K
2160	min	Summer	2.811	0.251	65.6	1.4	O K
2880	min	Summer	2.783	0.223	52.4	1.0	O K
4320	min	Summer	2.747	0.187	38.1	0.7	O K
5760	min	Summer	2.728	0.168	30.5	0.6	O K
7200	min	Summer	2.713	0.153	25.4	0.5	O K
8640	min	Summer	2.702	0.142	22.1	0.4	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	103.597	0.0	514.8	15
30	min	Summer	69.587	0.0	691.5	22
60	min	Summer	44.560	0.0	885.7	38
120	min	Summer	27.503	0.0	1093.3	68
180	min	Summer	20.407	0.0	1216.8	96
240	min	Summer	16.403	0.0	1304.1	126
360	min	Summer	12.073	0.0	1439.7	186
480	min	Summer	9.697	0.0	1541.8	246
600	min	Summer	8.173	0.0	1624.5	306
720	min	Summer	7.104	0.0	1694.4	366
960	min	Summer	5.689	0.0	1809.1	484
1440	min	Summer	4.152	0.0	1980.4	722
2160	min	Summer	3.023	0.0	2163.1	1072
2880	min	Summer	2.411	0.0	2299.9	1444
4320	min	Summer	1.749	0.0	2502.8	2156
5760	min	Summer	1.391	0.0	2654.3	2856
7200	min	Summer	1.166	0.0	2779.8	3600
8640	min	Summer	1.009	0.0	2888.0	4312

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:08	Designed by GR061116	Desinado
File COLLECTOR PIPE_C.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Storm Event			Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
10080	min	Summer	2.693	0.133	19.6	0.4	ОК
15	min	Winter	4.527	1.967	751.1	33.1	ОК
30	min	Winter	4.657	2.097	779.2	33.3	ОК
60	min	Winter	3.951	1.391	611.2	25.8	ОК
120	min	Winter	3.337	0.777	412.8	11.9	O K
180	min	Winter	3.189	0.629	312.7	8.6	ОК
240	min	Winter	3.117	0.557	253.3	6.9	O K
360	min	Winter	3.016	0.456	188.0	4.7	O K
480	min	Winter	2.959	0.399	151.4	3.6	O K
600	min	Winter	2.913	0.353	127.7	2.8	O K
720	min	Winter	2.881	0.321	111.1	2.2	O K
960	min	Winter	2.846	0.286	89.4	1.8	O K
1440	min	Winter	2.810	0.250	65.2	1.3	O K
2160	min	Winter	2.771	0.211	47.4	0.9	O K
2880	min	Winter	2.747	0.187	37.9	0.7	O K
4320	min	Winter	2.721	0.161	27.5	0.5	O K
5760	min	Winter	2.701	0.141	21.8	0.4	O K
7200	min	Winter	2.688	0.128	18.3	0.4	O K

Storm		Rain	${\tt Flooded}$	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
10080	min	Summer	0.893	0.0	2982.9	4960
15	min	Winter	103.597	0.0	576.5	14
30	min	Winter	69.587	0.0	774.5	21
60	min	Winter	44.560	0.0	991.9	38
120	min	Winter	27.503	0.0	1224.4	66
180	min	Winter	20.407	0.0	1362.8	96
240	min	Winter	16.403	0.0	1460.6	128
360	min	Winter	12.073	0.0	1612.4	186
480	min	Winter	9.697	0.0	1726.8	246
600	min	Winter	8.173	0.0	1819.4	306
720	min	Winter	7.104	0.0	1897.7	364
960	min	Winter	5.689	0.0	2026.2	484
1440	min	Winter	4.152	0.0	2218.0	726
2160	min	Winter	3.023	0.0	2422.7	1092
2880	min	Winter	2.411	0.0	2575.8	1428
4320	min	Winter	1.749	0.0	2803.2	2140
5760	min	Winter	1.391	0.0	2972.8	2912
7200	min	Winter	1.166	0.0	3113.4	3624

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:08	Designed by GR061116	Designado
File COLLECTOR PIPE_C.SRCX	Checked by	Drainage
XP Solutions	Source Control 2017.1.2	

Storm Event	Max Level (m)	-	Max Control (1/s)		Status
8640 min Winter	2.680	0.120	15.9	0.3	O K
10080 min Winter	2.673	0.113	14.0	0.3	O K

Storm Event			Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
	8640 min Winter	1.009	0.0	3234.6	4232
	10080 min Winter	0.893	0.0	3340.8	5080

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:08	Designed by GR061116	Designation
File COLLECTOR PIPE_C.SRCX	Checked by	Dialilage
XP Solutions	Source Control 2017.1.2	

Rainfall Details

Rainfall Model FSR Winter Storms Yes
Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 2.650

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	0.890	4	8	0.880	8	12	0.880

CH2M		Page 5
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:08	Designed by GR061116	Desinago
File COLLECTOR PIPE_C.SRCX	Checked by	Drainage
XP Solutions	Source Control 2017.1.2	•

Model Details

Storage is Online Cover Level (m) 6.000

Pipe Structure

Diameter (m) 0.525 Length (m) 144.000 Slope (1:X) 100.000 Invert Level (m) 2.560

Pipe Outflow Control

Diameter (m) 0.525 Entry Loss Coefficient 0.500 Slope (1:X) 100.0 Coefficient of Contraction 0.600 Length (m) 10.000 Upstream Invert Level (m) 2.560 Roughness k (mm) 0.600

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:09	Designed by GR061116	Desinado
File BASIN_1.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	4.968	0.468	27.6	981.2	ОК
30	min	Summer	5.106	0.606	32.1	1294.0	ОК
60	min	Summer	5.245	0.745	36.0	1619.2	O K
120	min	Summer	5.374	0.874	39.3	1931.6	O K
180	min	Summer	5.436	0.936	40.8	2086.9	O K
240	min	Summer	5.471	0.971	41.6	2173.5	O K
360	min	Summer	5.505	1.005	42.4	2259.2	O K
480	min	Summer	5.518	1.018	42.7	2293.5	O K
600	min	Summer	5.526	1.026	42.9	2313.6	O K
720	min	Summer	5.530	1.030	42.9	2323.0	O K
960	min	Summer	5.529	1.029	42.9	2320.3	O K
1440	min	Summer	5.506	1.006	42.4	2262.8	O K
2160	min	Summer	5.453	0.953	41.2	2128.7	O K
2880	min	Summer	5.396	0.896	39.8	1985.2	O K
4320	min	Summer	5.288	0.788	37.1	1722.9	O K
5760	min	Summer	5.198	0.698	34.7	1508.2	O K
7200	min	Summer	5.124	0.624	32.6	1335.0	O K
8640	min	Summer	5.063	0.563	30.7	1193.9	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	79.950	0.0	905.5	26
30	min	Summer	53.199	0.0	1218.7	40
60	min	Summer	33.892	0.0	1651.9	70
120	min	Summer	20.940	0.0	2048.1	128
180	min	Summer	15.610	0.0	2293.2	186
240	min	Summer	12.614	0.0	2472.2	244
360	min	Summer	9.343	0.0	2747.7	360
480	min	Summer	7.540	0.0	2956.2	414
600	min	Summer	6.381	0.0	3125.5	476
720	min	Summer	5.565	0.0	3268.6	538
960	min	Summer	4.481	0.0	3502.0	672
1440	min	Summer	3.298	0.0	3836.3	946
2160	min	Summer	2.424	0.0	4350.0	1360
2880	min	Summer	1.946	0.0	4653.4	1760
4320	min	Summer	1.427	0.0	5097.3	2548
5760	min	Summer	1.144	0.0	5501.6	3288
7200	min	Summer	0.964	0.0	5792.0	4040
8640	min	Summer	0.839	0.0	6036.5	4760

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:09	Designed by GR061116	Designation
File BASIN_1.SRCX	Checked by	niamaye
XP Solutions	Source Control 2017.1.2	<u> </u>

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
10080	min	Summer	5.011	0.511	29.1	1076.0	ОК
15	min	Winter	5.021	0.521	29.4	1100.1	ОК
30	min	Winter	5.174	0.674	34.0	1452.2	ОК
60	min	Winter	5.328	0.828	38.1	1819.2	ОК
120	min	Winter	5.472	0.972	41.6	2175.5	ОК
180	min	Winter	5.543	1.043	43.2	2356.8	ОК
240	min	Winter	5.583	1.083	44.1	2460.8	O K
360	min	Winter	5.626	1.126	45.1	2572.8	O K
480	min	Winter	5.641	1.141	45.4	2611.5	O K
600	min	Winter	5.643	1.143	45.4	2616.9	O K
720	min	Winter	5.646	1.146	45.5	2622.7	O K
960	min	Winter	5.638	1.138	45.3	2602.8	O K
1440	min	Winter	5.596	1.096	44.4	2494.3	O K
2160	min	Winter	5.512	1.012	42.5	2277.8	O K
2880	min	Winter	5.426	0.926	40.5	2060.5	O K
4320	min	Winter	5.273	0.773	36.7	1686.3	O K
5760	min	Winter	5.151	0.651	33.4	1397.4	O K
7200	min	Winter	5.056	0.556	30.5	1178.4	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
10080	min	Summer	0.745	0.0	6238.5	5456
15	min	Winter	79.950	0.0	1019.8	26
30	min	Winter	53.199	0.0	1369.1	40
60	min	Winter	33.892	0.0	1854.1	68
120	min	Winter	20.940	0.0	2297.7	126
180	min	Winter	15.610	0.0	2572.1	182
240	min	Winter	12.614	0.0	2772.4	238
360	min	Winter	9.343	0.0	3080.5	350
480	min	Winter	7.540	0.0	3313.6	456
600	min	Winter	6.381	0.0	3502.9	498
720	min	Winter	5.565	0.0	3662.6	568
960	min	Winter	4.481	0.0	3922.0	722
1440	min	Winter	3.298	0.0	4287.8	1026
2160	min	Winter	2.424	0.0	4874.5	1460
2880	min	Winter	1.946	0.0	5214.8	1880
4320	min	Winter	1.427	0.0	5713.7	2684
5760	min	Winter	1.144	0.0	6163.9	3456
7200	min	Winter	0.964	0.0	6489.8	4184

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:09	Designed by GR061116	Desipago
File BASIN_1.SRCX	Checked by	Drainage
XP Solutions	Source Control 2017.1.2	

Storm Event	Max Level (m)	-	Max Control (1/s)		Status
8640 min Winter 10080 min Winter				1009.4 877.5	0 K 0 K

Storm		Rain Flooded		Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume (m³)	Volume (m³)	(mins)
8640	min	Winter	0.839	0.0	6765.3	4928
10080	min	Winter	0.745	0.0	6996.1	5648

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:09	Designed by GR061116	Designation
File BASIN_1.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Rainfall Details

Rainfall Model FSR Winter Storms Yes
Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 6.700

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	2.233	4	8	2.233	8	12	2.233

CH2M		Page 5
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:09	Designed by GR061116	Desinado
File BASIN_1.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 6.000

Tank or Pond Structure

Invert Level (m) 4.500

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 1968.0 1.500 2850.0

Orifice Outflow Control

Diameter (m) 0.145 Discharge Coefficient 0.600 Invert Level (m) 4.500

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:10	Designed by GR061116	Desipage
File BASIN_1.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	<u>'</u>

	Sto	cm	Max	Max	Max	Max	Status
	Ever	nt	Level	Depth	Control	Volume	
			(m)	(m)	(1/s)	(m³)	
15	min	Cummor	5 000	0 500	31.8	1273 0	ОК
		Summer		0.778			0 K
		Summer				2140.4	O K
120	min	Summer	5.622	1.122	45.0	2560.9	O K
180	min	Summer	5.699	1.199	46.6	2764.5	O K
240	min	Summer	5.740	1.240	47.4	2874.7	Flood Risk
360	min	Summer	5.784	1.284	48.3	2991.7	Flood Risk
480	min	Summer	5.796	1.296	48.5	3026.2	Flood Risk
600	min	Summer	5.802	1.302	48.7	3041.5	Flood Risk
720	min	Summer	5.804	1.304	48.7	3045.7	Flood Risk
960	min	Summer	5.798	1.298	48.6	3031.7	Flood Risk
1440	min	Summer	5.768	1.268	48.0	2948.8	Flood Risk
2160	min	Summer	5.701	1.201	46.6	2770.2	Flood Risk
2880	min	Summer	5.630	1.130	45.1	2581.1	O K
4320	min	Summer	5.497	0.997	42.2	2238.5	O K
5760	min	Summer	5.384	0.884	39.5	1955.7	O K
7200	min	Summer	5.290	0.790	37.2	1727.1	O K
8640	min	Summer	5.212	0.712	35.1	1540.8	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	103.597	0.0	1186.4	26
30	min	Summer	69.587	0.0	1602.3	41
60	min	Summer	44.560	0.0	2182.1	70
120	min	Summer	27.503	0.0	2699.7	128
180	min	Summer	20.407	0.0	3006.7	186
240	min	Summer	16.403	0.0	3222.9	244
360	min	Summer	12.073	0.0	3557.1	362
480	min	Summer	9.697	0.0	3806.7	448
600	min	Summer	8.173	0.0	4006.8	504
720	min	Summer	7.104	0.0	4173.8	564
960	min	Summer	5.689	0.0	4441.1	692
1440	min	Summer	4.152	0.0	4795.7	968
2160	min	Summer	3.023	0.0	5430.8	1372
2880	min	Summer	2.411	0.0	5769.4	1788
4320	min	Summer	1.749	0.0	6254.5	2560
5760	min	Summer	1.391	0.0	6693.9	3344
7200	min	Summer	1.166	0.0	7006.6	4048
8640	min	Summer	1.009	0.0	7270.0	4832

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:10	Designed by GR061116	Designation
File BASIN_1.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	<u> </u>

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
10080	min	Summer	5.147	0.647	33.3	1387.2	ОК
15	min	Winter	5.164	0.664	33.8	1428.3	ОК
30	min	Winter	5.363	0.863	39.0	1905.3	ОК
60	min	Winter	5.561	1.061	43.6	2403.9	ОК
120	min	Winter	5.744	1.244	47.5	2883.4	Flood Risk
180	min	Winter	5.831	1.331	49.2	3120.1	Flood Risk
240	min	Winter	5.879	1.379	50.2	3252.5	Flood Risk
360	min	Winter	5.932	1.432	51.2	3401.9	Flood Risk
480	min	Winter	5.952	1.452	51.5	3457.6	Flood Risk
600	min	Winter	5.954	1.454	51.6	3463.6	Flood Risk
720	min	Winter	5.950	1.450	51.5	3450.7	Flood Risk
960	min	Winter	5.939	1.439	51.3	3421.9	Flood Risk
1440	min	Winter	5.890	1.390	50.4	3283.4	Flood Risk
2160	min	Winter	5.789	1.289	48.4	3007.1	Flood Risk
2880	min	Winter	5.685	1.185	46.3	2727.1	O K
4320	min	Winter	5.497	0.997	42.2	2238.8	O K
5760	min	Winter	5.343	0.843	38.5	1856.0	O K
7200	min	Winter	5.221	0.721	35.3	1563.2	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
10080	min	Summer	0.893	0.0	7487.2	5544
15	min	Winter	103.597	0.0	1333.1	26
30	min	Winter	69.587	0.0	1793.1	40
60	min	Winter	44.560	0.0	2447.6	68
120	min	Winter	27.503	0.0	3026.9	126
180	min	Winter	20.407	0.0	3370.2	182
240	min	Winter	16.403	0.0	3611.9	240
360	min	Winter	12.073	0.0	3985.3	352
480	min	Winter	9.697	0.0	4263.5	462
600	min	Winter	8.173	0.0	4486.0	564
720	min	Winter	7.104	0.0	4671.2	590
960	min	Winter	5.689	0.0	4964.1	738
1440	min	Winter	4.152	0.0	5334.8	1044
2160	min	Winter	3.023	0.0	6085.0	1492
2880	min	Winter	2.411	0.0	6464.3	1908
4320	min	Winter	1.749	0.0	7007.5	2728
5760	min	Winter	1.391	0.0	7499.2	3512
7200	min	Winter	1.166	0.0	7850.2	4256

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:10	Designed by GR061116	Designation
File BASIN_1.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Storm Event	Max Level (m)	-	Max Control (1/s)		Status
8640 min Winter 10080 min Winter				1334.9 1155.3	0 K 0 K

Storm		Rain Floode		Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume (m³)	Volume (m³)	(mins)
8640	min	Winter	1.009	0.0	8147.0	5008
10080	min	Winter	0.893	0.0	8394.8	5664

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:10	Designed by GR061116	Designation
File BASIN_1.SRCX	Checked by	Drainage
XP Solutions	Source Control 2017.1.2	

Rainfall Details

Rainfall Model FSR Winter Storms Yes
Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 6.700

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
٥	1	2.233	4	Q	2.233	8	1 2	2.233
U	4	Z • Z J J	1 4		Z • Z J J		12	2.233

CH2M		Page 5
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:10	Designed by GR061116	Desinado
File BASIN_1.SRCX	Checked by	Dialilatic
XP Solutions	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 6.000

Tank or Pond Structure

Invert Level (m) 4.500

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 1968.0 1.500 2850.0

Orifice Outflow Control

Diameter (m) 0.145 Discharge Coefficient 0.600 Invert Level (m) 4.500

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:11	Designed by GR061116	Designation
File BASIN_2.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	<u>'</u>

	Stor		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	4.994	0.494	19.5	681.7	ОК
30	min	Summer	5.136	0.636	22.4	899.1	ОК
60	min	Summer	5.278	0.778	25.1	1124.7	ОК
120	min	Summer	5.408	0.908	27.2	1340.8	ОК
180	min	Summer	5.471	0.971	28.2	1447.9	ОК
240	min	Summer	5.505	1.005	28.7	1507.3	ОК
360	min	Summer	5.538	1.038	29.2	1565.6	O K
480	min	Summer	5.551	1.051	29.4	1587.5	O K
600	min	Summer	5.558	1.058	29.5	1599.7	ОК
720	min	Summer	5.560	1.060	29.6	1604.7	O K
960	min	Summer	5.558	1.058	29.5	1600.1	O K
1440	min	Summer	5.533	1.033	29.2	1556.2	O K
2160	min	Summer	5.477	0.977	28.3	1459.6	O K
2880	min	Summer	5.418	0.918	27.4	1358.0	O K
4320	min	Summer	5.308	0.808	25.6	1174.9	O K
5760	min	Summer	5.216	0.716	24.0	1025.0	O K
7200	min	Summer	5.140	0.640	22.5	904.4	O K
8640	min	Summer	5.076	0.576	21.2	805.9	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	79.950	0.0	648.0	26
30	min	Summer	53.199	0.0	868.1	40
60	min	Summer	33.892	0.0	1159.8	70
120	min	Summer	20.940	0.0	1436.3	128
180	min	Summer	15.610	0.0	1607.4	186
240	min	Summer	12.614	0.0	1732.4	244
360	min	Summer	9.343	0.0	1925.1	360
480	min	Summer	7.540	0.0	2071.1	416
600	min	Summer	6.381	0.0	2189.7	478
720	min	Summer	5.565	0.0	2290.2	540
960	min	Summer	4.481	0.0	2454.5	674
1440	min	Summer	3.298	0.0	2691.5	948
2160	min	Summer	2.424	0.0	3033.3	1364
2880	min	Summer	1.946	0.0	3245.6	1764
4320	min	Summer	1.427	0.0	3559.0	2552
5760	min	Summer	1.144	0.0	3830.3	3288
7200	min	Summer	0.964	0.0	4033.3	4040
8640	min	Summer	0.839	0.0	4205.5	4760

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:11	Designed by GR061116	Designation
File BASIN_2.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	<u> </u>

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Statu	ıs
10080	min	Summer	5.022	0.522	20.1	723.4	0	K
15	min	Winter	5.049	0.549	20.7	764.5	0	K
30	min	Winter	5.206	0.706	23.8	1009.2	0	K
60	min	Winter	5.362	0.862	26.5	1264.0	0	K
120	min	Winter	5.507	1.007	28.8	1510.9	0	K
180	min	Winter	5.578	1.078	29.8	1636.3	0	K
240	min	Winter	5.618	1.118	30.4	1708.0	0	K
360	min	Winter	5.661	1.161	31.0	1785.0	0	K
480	min	Winter	5.675	1.175	31.2	1811.1	0	K
600	min	Winter	5.676	1.176	31.2	1813.0	0	K
720	min	Winter	5.678	1.178	31.3	1815.7	0	K
960	min	Winter	5.669	1.169	31.1	1799.8	0	K
1440	min	Winter	5.626	1.126	30.5	1721.4	0	K
2160	min	Winter	5.539	1.039	29.3	1567.8	0	K
2880	min	Winter	5.451	0.951	27.9	1414.7	0	K
4320	min	Winter	5.295	0.795	25.3	1152.5	0	K
5760	min	Winter	5.169	0.669	23.1	950.5	0	K
7200	min	Winter	5.070	0.570	21.1	797.1	0	K

Storm		Rain	Flooded	Discharge	Time-Peak	
Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)	
10080	min	Summer	0.745	0.0	4349.9	5456
15	min	Winter	79.950	0.0	728.3	26
30	min	Winter	53.199	0.0	973.7	40
60	min	Winter	33.892	0.0	1300.8	68
120	min	Winter	20.940	0.0	1610.4	126
180	min	Winter	15.610	0.0	1801.9	182
240	min	Winter	12.614	0.0	1941.9	238
360	min	Winter	9.343	0.0	2157.4	350
480	min	Winter	7.540	0.0	2320.6	456
600	min	Winter	6.381	0.0	2453.2	504
720	min	Winter	5.565	0.0	2565.3	570
960	min	Winter	4.481	0.0	2748.0	722
1440	min	Winter	3.298	0.0	3006.6	1028
2160	min	Winter	2.424	0.0	3398.5	1468
2880	min	Winter	1.946	0.0	3636.4	1880
4320	min	Winter	1.427	0.0	3988.1	2684
5760	min	Winter	1.144	0.0	4290.9	3456
7200	min	Winter	0.964	0.0	4518.6	4184

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:11	Designed by GR061116	Designation
File BASIN_2.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Storm Event	Max Level (m)	-	Max Control (1/s)		Status
8640 min Winter 10080 min Winter				678.9 586.5	0 K 0 K

Storm Event			Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
	8640 min Winter	0.839	0.0	4712.3	4928	
	10080 min Winter	0.745	0.0	4876.4	5648	

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:11	Designed by GR061116	Designation
File BASIN_2.SRCX	Checked by	manage
XP Solutions	Source Control 2017.1.2	

Rainfall Details

Rainfall Model FSR Winter Storms Yes
Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 4.660

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	1	1 552	1	8	1 550	0	1.0	1.553
U	4	1.000	4	0	1.000		12	1.000

CH2M		Page 5
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:11	Designed by GR061116	Desinago
File BASIN_2.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	•

Model Details

Storage is Online Cover Level (m) 6.000

Tank or Pond Structure

Invert Level (m) 4.500

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 1271.0 1.500 2000.0

Orifice Outflow Control

Diameter (m) 0.119 Discharge Coefficient 0.600 Invert Level (m) 4.500

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:12	Designed by GR061116	Designation
File BASIN_2.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	<u> </u>

	Stor		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
1.5	min	Summer	5.127	0.627	22.3	885.4	ОК
30		Summer				1180.3	0 K
60		Summer		0.993		1487.4	0 K
120	min	Summer	5.658			1779.2	ОК
180	min	Summer	5.734	1.234	32.0	1920.3	Flood Risk
240	min	Summer	5.775	1.275	32.6	1996.5	Flood Risk
360	min	Summer	5.818	1.318	33.2	2077.5	Flood Risk
480	min	Summer	5.830	1.330	33.3	2100.6	Flood Risk
600	min	Summer	5.835	1.335	33.4	2109.5	Flood Risk
720	min	Summer	5.835	1.335	33.4	2110.9	Flood Risk
960	min	Summer	5.829	1.329	33.3	2098.7	Flood Risk
1440	min	Summer	5.797	1.297	32.9	2037.5	Flood Risk
2160	min	Summer	5.729	1.229	32.0	1910.1	Flood Risk
2880	min	Summer	5.656	1.156	31.0	1776.9	O K
4320	min	Summer	5.522	1.022	29.0	1536.8	O K
5760	min	Summer	5.407	0.907	27.2	1340.0	O K
7200	min	Summer	5.312	0.812	25.6	1180.4	ОК
8640	min	Summer	5.232	0.732	24.2	1050.4	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	103.597	0.0	845.3	26
30	min	Summer	69.587	0.0	1137.3	41
60	min	Summer	44.560	0.0	1529.6	70
120	min	Summer	27.503	0.0	1890.8	128
180	min	Summer	20.407	0.0	2105.3	186
240	min	Summer	16.403	0.0	2256.3	244
360	min	Summer	12.073	0.0	2490.1	362
480	min	Summer	9.697	0.0	2664.9	454
600	min	Summer	8.173	0.0	2805.2	506
720	min	Summer	7.104	0.0	2922.5	568
960	min	Summer	5.689	0.0	3110.7	694
1440	min	Summer	4.152	0.0	3360.6	970
2160	min	Summer	3.023	0.0	3785.7	1384
2880	min	Summer	2.411	0.0	4022.5	1788
4320	min	Summer	1.749	0.0	4365.1	2560
5760	min	Summer	1.391	0.0	4659.6	3344
7200	min	Summer	1.166	0.0	4878.2	4104
8640	min	Summer	1.009	0.0	5063.6	4840

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 22/05/2018 17:12	Designed by GR061116	Designation
File BASIN_2.SRCX	Checked by	Dialilada
XP Solutions	Source Control 2017.1.2	<u> </u>

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
10080	min	Summer	5.164	0.664	23.0	942.7	ОК
15	min	Winter	5.196	0.696	23.6	992.9	O K
30	min	Winter	5.398	0.898	27.1	1324.5	O K
60	min	Winter	5.598	1.098	30.1	1671.0	ОК
120	min	Winter	5.779	1.279	32.6	2004.1	Flood Risk
180	min	Winter	5.865	1.365	33.8	2168.4	Flood Risk
240	min	Winter	5.913	1.413	34.4	2260.4	Flood Risk
360	min	Winter	5.966	1.466	35.1	2364.3	Flood Risk
480	min	Winter	5.985	1.485	35.3	2403.1	Flood Risk
600	min	Winter	5.987	1.487	35.3	2407.3	Flood Risk
720	min	Winter	5.982	1.482	35.3	2395.9	Flood Risk
960	min	Winter	5.971	1.471	35.1	2374.2	Flood Risk
1440	min	Winter	5.921	1.421	34.5	2275.8	Flood Risk
2160	min	Winter	5.820	1.320	33.2	2081.2	Flood Risk
2880	min	Winter	5.715	1.215	31.8	1884.4	Flood Risk
4320	min	Winter	5.525	1.025	29.0	1542.2	O K
5760	min	Winter	5.368	0.868	26.6	1274.2	O K
7200	min	Winter	5.243	0.743	24.4	1068.7	O K

Storm			Rain	Flooded	Discharge	Time-Peak
Event			(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
10080	min	Summer	0.893	0.0	5218.7	5552
15	min	Winter	103.597	0.0	948.3	26
30	min	Winter	69.587	0.0	1271.0	40
60	min	Winter	44.560	0.0	1714.8	68
120	min	Winter	27.503	0.0	2119.1	126
180	min	Winter	20.407	0.0	2359.0	182
240	min	Winter	16.403	0.0	2527.8	240
360	min	Winter	12.073	0.0	2789.0	354
480	min	Winter	9.697	0.0	2983.8	462
600	min	Winter	8.173	0.0	3139.8	566
720	min	Winter	7.104	0.0	3269.8	596
960	min	Winter	5.689	0.0	3475.4	740
1440	min	Winter	4.152	0.0	3731.7	1046
2160	min	Winter	3.023	0.0	4241.1	1492
2880	min	Winter	2.411	0.0	4506.4	1912
4320	min	Winter	1.749	0.0	4889.7	2728
5760	min	Winter	1.391	0.0	5219.7	3512
7200	min	Winter	1.166	0.0	5464.9	4256

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micke
Date 22/05/2018 17:12	Designed by GR061116	Designation
File BASIN_2.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Storm Event	-	Max Control (1/s)		Status
8640 min Winter 10080 min Winter			908.6 782.4	0 K 0 K

Storm		Rain	Flooded	Discharge	Time-Peak	
Event		(mm/hr)	Volume	Volume	(mins)	
			(m³)	(m³)		
8640	min Winter	1.009	0.0	5673.5	5008	
10080	min Winter	0.893	0.0	5849.7	5744	

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:12	Designed by GR061116	Designation
File BASIN_2.SRCX	Checked by	Drainage
XP Solutions	Source Control 2017.1.2	

Rainfall Details

Rainfall Model FSR Winter Storms Yes
Return Period (years) 100 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 4.660

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	1.553	4	8	1.553	8	12	1.553

CH2M		Page 5
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 22/05/2018 17:12	Designed by GR061116	Designation
File BASIN_2.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	<u>'</u>

Model Details

Storage is Online Cover Level (m) 6.000

Tank or Pond Structure

Invert Level (m) 4.500

Depth (m) Area (m²) Depth (m) Area (m²)

0.000 1271.0 1.500 2000.0

Orifice Outflow Control

Diameter (m) 0.119 Discharge Coefficient 0.600 Invert Level (m) 4.500

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 29/05/2018 19:34	Designed by GR061116	Desinago
File Filter drain.SRCX	Checked by	Dialilage
XP Solutions	Source Control 2017.1.2	

Half Drain Time : 80 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Even	t	Level	Depth	${\tt Infiltration}$	Control	$\Sigma \ \text{Outflow}$	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	7.469	0.869	0.0	2.3	2.3	13.0	O K
30	min	Summer	7.620	1.020	0.0	2.3	2.3	16.4	O K
60	min	Summer	7.713	1.113	0.0	2.3	2.3	18.5	Flood Risk
120	min	Summer	7.707	1.107	0.0	2.3	2.3	18.3	Flood Risk
180	min	Summer	7.676	1.076	0.0	2.3	2.3	17.6	O K
240	min	Summer	7.637	1.037	0.0	2.3	2.3	16.7	O K
360	min	Summer	7.553	0.953	0.0	2.3	2.3	14.9	O K
480	min	Summer	7.468	0.868	0.0	2.3	2.3	12.9	O K
600	min	Summer	7.389	0.789	0.0	2.3	2.3	11.1	O K
720	min	Summer	7.318	0.718	0.0	2.3	2.3	9.3	O K
960	min	Summer	7.180	0.580	0.0	2.2	2.2	6.3	O K
1440	min	Summer	6.921	0.321	0.0	2.2	2.2	2.2	O K
2160	min	Summer	6.600	0.000	0.0	2.1	2.1	0.0	O K
2880	min	Summer	6.600	0.000	0.0	1.7	1.7	0.0	O K
4320	min	Summer	6.600	0.000	0.0	1.2	1.2	0.0	O K
5760	min	Summer	6.600	0.000	0.0	1.0	1.0	0.0	O K
7200	min	Summer	6.600	0.000	0.0	0.8	0.8	0.0	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	79.950	0.0	15.8	21
30	min	Summer	53.199	0.0	21.0	34
60	min	Summer	33.892	0.0	26.6	62
120	min	Summer	20.940	0.0	33.1	96
180	min	Summer	15.610	0.0	36.8	130
240	min	Summer	12.614	0.0	39.7	164
360	min	Summer	9.343	0.0	44.1	232
480	min	Summer	7.540	0.0	47.5	300
600	min	Summer	6.381	0.0	50.2	364
720	min	Summer	5.565	0.0	52.6	426
960	min	Summer	4.481	0.0	56.4	548
1440	min	Summer	3.298	0.0	62.3	772
2160	min	Summer	2.424	0.0	68.7	0
2880	min	Summer	1.946	0.0	73.6	0
4320	min	Summer	1.427	0.0	80.9	0
5760	min	Summer	1.144	0.0	86.5	0
7200	min	Summer	0.964	0.0	91.1	0

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 29/05/2018 19:34	Designed by GR061116	Desinage
File Filter drain.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	•

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
8640	min	Summer	6.600	0.000	0.0	0.7	0.7	0.0	O K
10080	min	Summer	6.600	0.000	0.0	0.6	0.6	0.0	O K
15	min	Winter	7.552	0.952	0.0	2.3	2.3	14.8	O K
30	min	Winter	7.733	1.133	0.0	2.3	2.3	18.9	Flood Risk
60	min	Winter	7.858	1.258	0.0	2.3	2.3	21.7	Flood Risk
120	min	Winter	7.859	1.259	0.0	2.3	2.3	21.7	Flood Risk
180	min	Winter	7.811	1.211	0.0	2.3	2.3	20.7	Flood Risk
240	min	Winter	7.749	1.149	0.0	2.3	2.3	19.3	Flood Risk
360	min	Winter	7.614	1.014	0.0	2.3	2.3	16.2	O K
480	min	Winter	7.478	0.878	0.0	2.3	2.3	13.2	O K
600	min	Winter	7.357	0.757	0.0	2.3	2.3	10.3	O K
720	min	Winter	7.246	0.646	0.0	2.2	2.2	7.7	O K
960	min	Winter	7.016	0.416	0.0	2.2	2.2	3.4	O K
1440	min	Winter	6.600	0.000	0.0	2.0	2.0	0.0	O K
2160	min	Winter	6.600	0.000	0.0	1.5	1.5	0.0	O K
2880	min	Winter	6.600	0.000	0.0	1.2	1.2	0.0	O K
4320	min	Winter	6.600	0.000	0.0	0.9	0.9	0.0	O K
5760	min	Winter	6.600	0.000	0.0	0.7	0.7	0.0	O K

Storm Event			Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
8640	min	Summer	0.839	0.0	95.1	0
10080	min	Summer	0.745	0.0	98.6	0
15	min	Winter	79.950	0.0	17.6	21
30	min	Winter	53.199	0.0	23.5	34
60	min	Winter	33.892	0.0	29.9	62
120	min	Winter	20.940	0.0	37.0	104
180	min	Winter	15.610	0.0	41.4	140
240	min	Winter	12.614	0.0	44.4	178
360	min	Winter	9.343	0.0	49.4	252
480	min	Winter	7.540	0.0	53.1	322
600	min	Winter	6.381	0.0	56.2	388
720	min	Winter	5.565	0.0	59.0	450
960	min	Winter	4.481	0.0	63.2	562
1440	min	Winter	3.298	0.0	69.8	0
2160	min	Winter	2.424	0.0	77.0	0
2880	min	Winter	1.946	0.0	82.4	0
4320	min	Winter	1.427	0.0	90.6	0
5760	min	Winter	1.144	0.0	96.9	0

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 29/05/2018 19:34	Designed by GR061116	Desinado
File Filter drain.SRCX	Checked by	namaye
XP Solutions	Source Control 2017.1.2	

Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)				Status
7200 min Winter	6.600	0.000	0.0	0.6	0.6	0.0	O K
8640 min Winter	6.600	0.000	0.0	0.5	0.5	0.0	O K
10080 min Winter	6.600	0.000	0.0	0.5	0.5	0.0	ОК

Storm			Rain	Flooded	Discharge	Time-Peak
Event			(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
7200	min	Winter	0.964	0.0	102.0	0
8640	min	Winter	0.839	0.0	106.5	0
10080	min	Winter	0.745	0.0	110.4	0

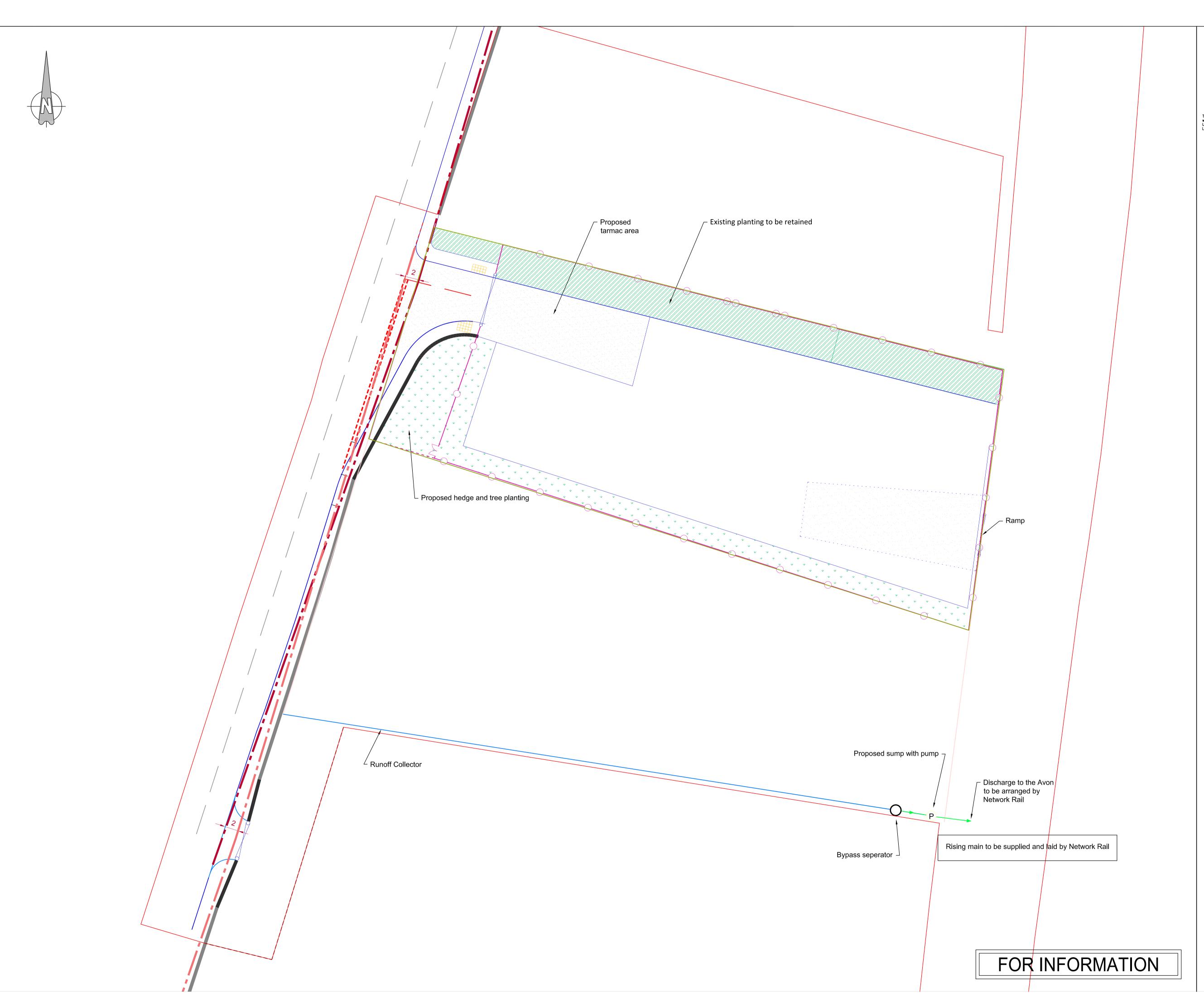
CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 29/05/2018 19:36	Designed by GR061116	Desinago
File Filter drain.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Half Drain Time : 119 minutes.

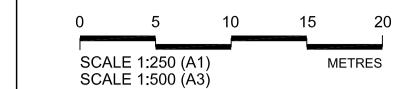
Storm		Max	Max	Мах	Max	Max	Max	Status
Ever	it	Level	Depth					
		(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
min	Summer	7.671	1.071	0.0	2.3	2.3	17.5	ОК
min	Summer	7.899	1.299	0.0	2.3	2.3	22.6	Flood Risk
min	Summer	8.002	1.402	0.0	2.4	2.4	26.5	FLOOD
min	Summer	8.002	1.402	0.0	2.4	2.4	27.3	FLOOD
min	Summer	8.001	1.401	0.0	2.4	2.4	26.3	FLOOD
min	Summer	8.000	1.400	0.0	2.4	2.4	25.2	FLOOD
min	Summer	7.924	1.324	0.0	2.3	2.3	23.2	Flood Risk
min	Summer	7.829	1.229	0.0	2.3	2.3	21.1	Flood Risk
min	Summer	7.735	1.135	0.0	2.3	2.3	19.0	Flood Risk
min	Summer	7.644	1.044	0.0	2.3	2.3	16.9	O K
min	Summer	7.474	0.874	0.0	2.3	2.3	13.1	O K
min	Summer	7.213	0.613	0.0	2.2	2.2	7.0	O K
min	Summer	6.873	0.273	0.0	2.2	2.2	1.6	O K
min	Summer	6.600	0.000	0.0	2.1	2.1	0.0	O K
min	Summer	6.600	0.000	0.0	1.5	1.5	0.0	O K
min	Summer	6.600	0.000	0.0	1.2	1.2	0.0	O K
min	Summer	6.600	0.000	0.0	1.0	1.0	0.0	O K
	min	min Summer	Event Level min Summer 7.671 min Summer 7.899 min Summer 8.002 min Summer 8.001 min Summer 8.001 min Summer 7.924 min Summer 7.235 min Summer 7.474 min Summer 7.213 min Summer 6.600 min Summer 6.600 min Summer 6.600 min Summer 6.600 min Summer 6.600	Event Level Depth	Event (m) Level (m) Depth (m) Infiltration (1/s) min Summer 7.671 1.071 0.0 min Summer 7.899 1.299 0.0 min Summer 8.002 1.402 0.0 min Summer 8.001 1.401 0.0 min Summer 7.924 1.240 0.0 min Summer 7.924 1.229 0.0 min Summer 7.829 1.229 0.0 min Summer 7.644 1.044 0.0 min Summer 7.474 0.874 0.0 min Summer 7.213 0.613 0.0 min Summer 6.600 0.000 0.0 min Summer 6.600 0.000 0.0 min Summer 6.600 0.000 0.0	Event (m) Level (m) Depth (m) Infiltration (1/s) Control (1/s) min Summer 7.671 1.071 0.00 2.3 min Summer 7.899 1.299 0.00 2.3 min Summer 8.002 1.402 0.00 2.4 min Summer 8.001 1.401 0.00 2.4 min Summer 8.000 1.401 0.00 2.4 min Summer 7.924 1.324 0.00 2.3 min Summer 7.829 1.229 0.00 2.3 min Summer 7.829 1.229 0.00 2.3 min Summer 7.829 1.229 0.00 2.3 min Summer 7.644 1.044 0.0 2.3 min Summer 7.213 0.613 0.0 2.2 min Summer 6.600 0.000 0.0 2.1 min	Event (m) Level (m) Depth (m) Infiltration (1/s) Control (1/s) % Outflow (1/s) min Summer 7.671 1.071 0.00 2.3 2.3 min Summer 7.899 1.299 0.00 2.3 2.3 min Summer 8.002 1.402 0.00 2.4 2.4 min Summer 8.001 1.401 0.00 2.4 2.4 min Summer 8.000 1.401 0.00 2.4 2.4 min Summer 7.924 1.324 0.00 2.3 2.3 min Summer 7.829 1.229 0.00 2.3 2.3 min Summer 7.829 1.229 0.00 2.3 2.3 min Summer 7.829 1.229 0.00 2.3 2.3 min Summer 7.844 1.044 0.0 2.3 2.3 min Summer 7.474 0.874 0.0 2.3 2.3 min Summer 7.213 0.613 0.0 2.2 2.2 min Summer 8.000 0.000 0.0 2.2 2.2 min Sum	Event (m) Level (m) Depth (m) Infiltration (1/s) Control (1/s) 2 Outflow (1/s) Volume (m³) min Summer 7.671 1.071 0.00 2.3 2.3 2.3 17.5 min Summer 7.899 1.299 0.00 2.3 2.3 2.3 22.6 min Summer 8.002 1.402 0.00 2.4 2.4 26.5 min Summer 8.001 1.401 0.00 2.4 2.4 2.6 min Summer 8.001 1.401 0.00 2.4 2.4 2.6 min Summer 7.924 1.324 0.00 2.4 2.4 2.5 min Summer 7.829 1.229 0.00 2.3 2.3 2.3 2.1 min Summer 7.735 1.135 0.0 2.3 2.3 2.3 1.9 min Summer 7.644 1.044 0.0 2.3

	Storm		Rain	Flooded	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	103.597	0.0	20.4	21
30	min	Summer	69.587	0.0	27.4	35
60	min	Summer	44.560	1.6	35.0	62
120	min	Summer	27.503	2.3	43.4	108
180	min	Summer	20.407	1.4	48.3	140
240	min	Summer	16.403	0.3	51.7	172
360	min	Summer	12.073	0.0	56.9	242
480	min	Summer	9.697	0.0	61.2	310
600	min	Summer	8.173	0.0	64.3	376
720	min	Summer	7.104	0.0	67.2	442
960	min	Summer	5.689	0.0	71.6	568
1440	min	Summer	4.152	0.0	78.5	808
2160	min	Summer	3.023	0.0	85.7	1132
2880	min	Summer	2.411	0.0	91.1	0
4320	min	Summer	1.749	0.0	99.2	0
5760	min	Summer	1.391	0.0	105.2	0
7200	min	Summer	1.166	0.0	110.1	0

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 29/05/2018 19:36	Designed by GR061116	Desinage
File Filter drain.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	<u> </u>


	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
8640	min	Summer	6.600	0.000	0.0	0.9	0.9	0.0	O K
10080	min	Summer	6.600	0.000	0.0	0.8	0.8	0.0	O K
15	min	Winter	7.779	1.179	0.0	2.3	2.3	20.0	Flood Risk
30	min	Winter	8.001	1.401	0.0	2.4	2.4	26.0	FLOOD
60	min	Winter	8.006	1.406	0.0	2.4	2.4	30.9	FLOOD
120	min	Winter	8.008	1.408	0.0	2.4	2.4	32.7	FLOOD
180	min	Winter	8.006	1.406	0.0	2.4	2.4	31.2	FLOOD
240	min	Winter	8.005	1.405	0.0	2.4	2.4	29.7	FLOOD
360	min	Winter	8.002	1.402	0.0	2.4	2.4	26.5	FLOOD
480	min	Winter	7.922	1.322	0.0	2.3	2.3	23.2	Flood Risk
600	min	Winter	7.774	1.174	0.0	2.3	2.3	19.8	Flood Risk
720	min	Winter	7.633	1.033	0.0	2.3	2.3	16.7	O K
960	min	Winter	7.385	0.785	0.0	2.3	2.3	11.0	O K
1440	min	Winter	6.968	0.368	0.0	2.2	2.2	2.8	O K
2160	min	Winter	6.600	0.000	0.0	1.9	1.9	0.0	O K
2880	min	Winter	6.600	0.000	0.0	1.5	1.5	0.0	O K
4320	min	Winter	6.600	0.000	0.0	1.1	1.1	0.0	O K
5760	min	Winter	6.600	0.000	0.0	0.9	0.9	0.0	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
8640	min	Summer	1.009	0.0	114.4	0
10080	min	Summer	0.893	0.0	118.2	0
15	min	Winter	103.597	0.0	22.9	22
30	min	Winter	69.587	1.0	30.6	35
60	min	Winter	44.560	5.8	39.4	62
120	min	Winter	27.503	7.6	48.4	118
180	min	Winter	20.407	6.1	54.1	150
240	min	Winter	16.403	4.6	57.9	188
360	min	Winter	12.073	1.6	63.8	262
480	min	Winter	9.697	0.0	68.4	336
600	min	Winter	8.173	0.0	72.1	406
720	min	Winter	7.104	0.0	75.3	474
960	min	Winter	5.689	0.0	80.2	600
1440	min	Winter	4.152	0.0	87.8	816
2160	min	Winter	3.023	0.0	96.0	0
2880	min	Winter	2.411	0.0	102.1	0
4320	min	Winter	1.749	0.0	111.1	0
5760	min	Winter	1.391	0.0	117.8	0

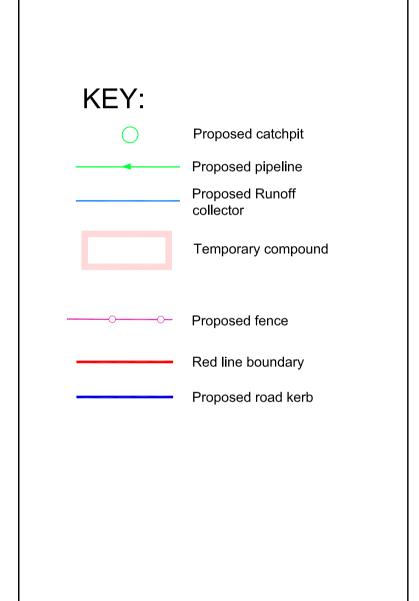

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 29/05/2018 19:36	Designed by GR061116	Designado
File Filter drain.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)			Max Volume (m³)	Status
7200 min Winter	6.600	0.000	0.0	0.7	0.7	0.0	ОК
8640 min Winter	6.600	0.000	0.0	0.6	0.6	0.0	O K
10080 min Winter	6.600	0.000	0.0	0.6	0.6	0.0	ОК

Storm Event			Flooded Volume (m ³)	Discharge Volume (m³)	Time-Peak (mins)
7200	min Winter	1.166	0.0	123.4	0
8640	min Winter	1.009	0.0	128.2	0
10080	min Winter	0.893	0.0	132.4	0

This drawing is to be read in conjunction with all relevant Architects, Engineers and Specialist Manufacturer's drawings and specifications. If in doubt please consult the Engineer.

This map is reproduced from Ordnance Survey® material by Halcrow on behalf of North Somerset Cour with the permission of the Controller of Her Majesty's Stationery Office, ©Crown copyright.


Unauthorised reproduction infringes Crown copyright and may lead to prosecution or civil proceedings.

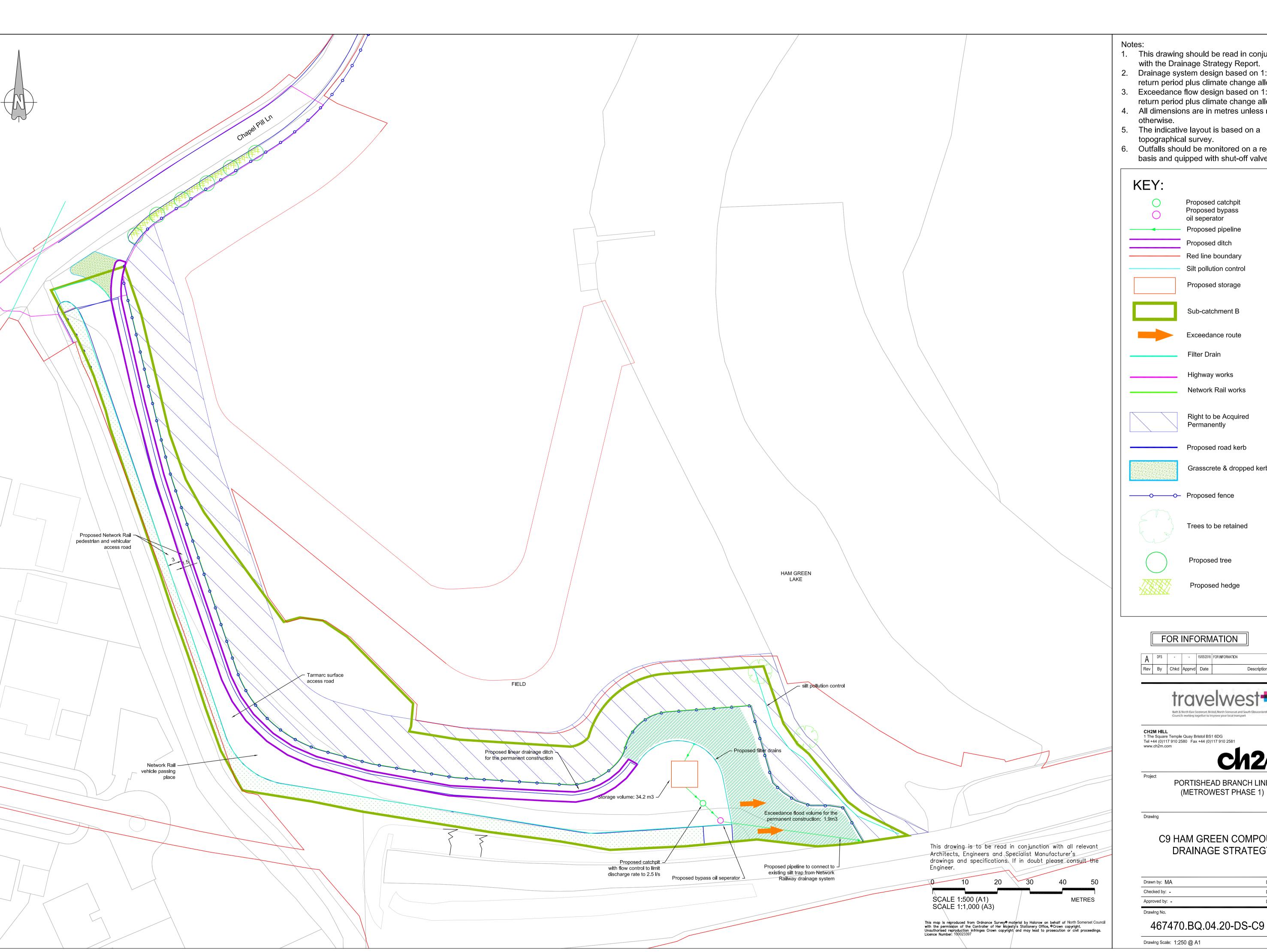
Licence Number: 100023397

Notes:

- This drawing should be read in conjunction with the Drainage Strategy Report.
- 2. Drainage system design based on 1:30 year return period plus climate change allowance
- 3. Exceedance flow design based on 1:100 year return period plus climate change allowance.
- 4. All dimensions are in metres unless noted otherwise.
- The indicative layout is based on a topographical survey.
- 6. Outfalls should be monitored on a regular basis and quipped with shut-off valves..
- 7. Proposed drainage concept to be subjected to Railway Network consent for

discharge points.

CH2M HILL
1 The Square Temple Quay Bristol BS1 6DG
Tel +44 (0)117 910 2580 Fax +44 (0)117 910 2581
www.ch2m.com


PORTISHEAD BRANCH LINE METROWEST PHASE 1

Drawing

CLANAGE ROAD PERMANENT NETWORK RAIL AND CONSTRUCTION COMPOUND

ate: 29/06/2018
ate:
ate:
Revision
A

Drawing Scale: 1:250 @ A1

- 1. This drawing should be read in conjunction with the Drainage Strategy Report.
- 2. Drainage system design based on 1:30 year
- return period plus climate change allowance. 3. Exceedance flow design based on 1:100 year
- return period plus climate change allowance. 4. All dimensions are in metres unless noted
- 5. The indicative layout is based on a topographical survey.
- 6. Outfalls should be monitored on a regular basis and quipped with shut-off valves..

Proposed catchpit Proposed bypass oil seperator

Proposed pipeline

Proposed ditch

Red line boundary Silt pollution control

Proposed storage

Sub-catchment B

Exceedance route Filter Drain

Highway works

Network Rail works

Right to be Acquired

Grasscrete & dropped kerb

Permanently

Proposed road kerb

Trees to be retained

Proposed tree

Proposed hedge

FOR INFORMATION

Rev By Chkd Apprvd Date Description

1 The Square Temple Quay Bristol BS1 6DG
Tel +44 (0)117 910 2580 Fax +44 (0)117 910 2581
www.ch2m.com

PORTISHEAD BRANCH LINE

(METROWEST PHASE 1)

C9 HAM GREEN COMPOUND DRAINAGE STRATEGY

Date: 02/07/2018 Drawn by: MA Date: -Approved by: -Date: -Revision

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 02/07/2018 16:31	Designed by MA047950	Desinado
File DITCH_PERMANENT.SRCX	Checked by	Dian laye
XP Solutions	Source Control 2017 1 2	•

Half Drain Time : 308 minutes.

	Storm Max Max Max		Max		Max	Max	Status			
	Event	:	Level	Depth	Infiltration	Control	Control E Outflow		Volume	
			(m)	(m)	(1/s)	(1/s)		(1/s)	(m³)	
15	min S	Summer	5.642	0.442	0.0	1.8		1.8	31.0	O K
30	min S	Summer	5.695	0.495	0.0	1.9		1.9	40.6	O K
60	min S	Summer	5.740	0.540	0.0	2.0		2.0	49.8	Flood Risk
120	min S	Summer	5.775	0.575	0.0	2.0		2.0	57.3	Flood Risk
180	min S	Summer	5.786	0.586	0.0	2.0		2.0		Flood Risk
240	min S	Summer	5.788	0.588	0.0	2.0		2.0	60.2	Flood Risk
360	min S	Summer	5.787	0.587	0.0	2.0		2.0	59.9	Flood Risk
480	min S	Summer	5.783	0.583	0.0	2.0		2.0	59.0	Flood Risk
600	min S	Summer	5.777	0.577	0.0	2.0		2.0	57.8	Flood Risk
720	min S	Summer	5.771	0.571	0.0	2.0		2.0	56.4	Flood Risk
960	min S	Summer	5.757	0.557	0.0	2.0		2.0	53.4	Flood Risk
1440	min S	Summer	5.730	0.530	0.0	1.9		1.9	47.7	Flood Risk
2160	min S	Summer	5.691	0.491	0.0	1.9		1.9	39.9	O K
2880	min S	Summer	5.655	0.455	0.0	1.8		1.8	33.3	O K
4320	min S	Summer	5.590	0.390	0.0	1.6		1.6	23.1	O K
5760	min S	Summer	5.535	0.335	0.0	1.5		1.5	16.2	O K
7200	min S	Summer	5.489	0.289	0.0	1.4		1.4	11.6	O K
8640	min S	Summer	5.451	0.251	0.0	1.3		1.3	8.4	O K
10080	min S	Summer	5.419	0.219	0.0	1.2		1.2	6.2	O K
15	min V	Winter	5.665	0.465	0.0	1.8		1.8	34.9	O K
30	min V	Winter	5.721	0.521	0.0	1.9		1.9	45.8	Flood Risk

Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)	
15	min	Summer	101.754	0.0	32.8	23
30	min	Summer	67.708	0.0	43.7	37
60	min	Summer	43.136	0.0	55.6	66
120	min	Summer	26.651	0.0	68.8	124
180	min	Summer	19.868	0.0	76.9	182
240	min	Summer	16.054	0.0	82.8	228
360	min	Summer	11.891	0.0	92.0	286
480	min	Summer	9.596	0.0	99.0	350
600	min	Summer	8.121	0.0	104.8	420
720	min	Summer	7.083	0.0	109.6	490
960	min	Summer	5.703	0.0	117.7	626
1440	min	Summer	4.198	0.0	130.0	898
2160	min	Summer	3.085	0.0	143.3	1296
2880	min	Summer	2.477	0.0	153.4	1672
4320	min	Summer	1.816	0.0	168.7	2384
5760	min	Summer	1.456	0.0	180.3	3112
7200	min	Summer	1.227	0.0	189.9	3816
8640	min	Summer	1.067	0.0	198.2	4496
10080	\min	Summer	0.948	0.0	205.6	5240
15	\min	Winter	101.754	0.0	36.8	23
30	min	Winter	67.708	0.0	48.9	37

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 02/07/2018 16:31	Designed by MA047950	Desipado
File DITCH_PERMANENT.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	•

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
60	min Wi	inter	5.771	0.571	0.0	2.0	2.0	56.4	Flood Risk
120	min Wi	inter	5.811	0.611	0.0	2.1	2.1	65.5	Flood Risk
180	min Wi	inter	5.825	0.625	0.0	2.1	2.1	68.9	Flood Risk
240	min Wi	inter	5.829	0.629	0.0	2.1	2.1	69.9	Flood Risk
360	min Wi	inter	5.827	0.627	0.0	2.1	2.1	69.4	Flood Risk
480	min Wi	inter	5.822	0.622	0.0	2.1	2.1	68.2	Flood Risk
600	min Wi	inter	5.815	0.615	0.0	2.1	2.1	66.5	Flood Risk
720	min Wi	inter	5.806	0.606	0.0	2.1	2.1	64.5	Flood Risk
960	min Wi	inter	5.787	0.587	0.0	2.0	2.0	59.9	Flood Risk
1440	min Wi	inter	5.746	0.546	0.0	2.0	2.0	51.0	Flood Risk
2160	min Wi	inter	5.688	0.488	0.0	1.9	1.9	39.3	O K
2880	min Wi	inter	5.635	0.435	0.0	1.7	1.7	29.9	O K
4320	min Wi	inter	5.542	0.342	0.0	1.5	1.5	17.1	O K
5760	min Wi	inter	5.468	0.268	0.0	1.4	1.4	9.8	O K
7200	min Wi	inter	5.413	0.213	0.0	1.2	1.2	5.8	O K
8640	min Wi	inter	5.372	0.172	0.0	1.1	1.1	3.6	O K
0800.	min Wi	inter	5.342	0.142	0.0	1.0	1.0	2.4	O K

Storm			Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
60	min	Winter	43.136	0.0	62.3	64	
120	min	Winter	26.651	0.0	77.0	122	
180	min	Winter	19.868	0.0	86.1	178	
240	min	Winter	16.054	0.0	92.8	232	
360	min	Winter	11.891	0.0	103.1	326	
480	min	Winter	9.596	0.0	110.9	376	
600	min	Winter	8.121	0.0	117.3	452	
720	min	Winter	7.083	0.0	122.8	530	
960	min	Winter	5.703	0.0	131.8	680	
1440	min	Winter	4.198	0.0	145.6	968	
2160	min	Winter	3.085	0.0	160.4	1368	
2880	min	Winter	2.477	0.0	171.8	1760	
4320	min	Winter	1.816	0.0	188.9	2468	
5760	min	Winter	1.456	0.0	201.9	3168	
7200	min	Winter	1.227	0.0	212.7	3816	
8640	min	Winter	1.067	0.0	222.0	4496	
10080	min	Winter	0.948	0.0	230.2	5152	

CH2M		Page 3
Ash House		
Falcon Road		L.
Exeter EX2 7LB		Micco
Date 02/07/2018 16:31	Designed by MA047950	Desinado
File DITCH_PERMANENT.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Rainfall Details

Rainfall Model FSR Winter Storms Yes Return Period (years) 30 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 20.000 Shortest Storm (mins) 150 Ratio R 0.350 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.172

				(mins)				
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	3	0.057	3	6	0.057	6	9	0.058

CH2M		Page 4
Ash House		
Falcon Road		Y.
Exeter EX2 7LB		Misco
Date 02/07/2018 16:31	Designed by MA047950	Drainage
File DITCH_PERMANENT.SRCX	Checked by	Diali lads
XP Solutions	Source Control 2017.1.2	•

Model Details

Storage is Online Cover Level (m) 6.000

Swale Structure

Infiltration Coefficient Base (m/hr)	0.00000	Length (m)	190.0
Infiltration Coefficient Side (m/hr)	0.00000	Side Slope (1:X)	1.0
Safety Factor	2.0	Slope (1:X)	400.0
Porosity	1.00	Cap Volume Depth (m)	0.000
<pre>Invert Level (m)</pre>	5.200 Cap	Infiltration Depth (m)	0.000
Base Width (m)	0.5		

Orifice Outflow Control

Diameter (m) 0.036 Discharge Coefficient 0.600 Invert Level (m) 5.200

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 02/07/2018 16:30	Designed by MA047950	Desinado
File CELLULARSTORAGE.SRCX	Checked by	Diali lade
XD Solutions	Source Control 2017 1 2	'

Half Drain Time : 145 minutes.

	Storm	n	Max	Max	Max	Max		Max	Max	Status
	Event	:	Level	Depth	Infiltration	Control	Σ	Outflow	Volume	
			(m)	(m)	(l/s)	(1/s)		(1/s)	(m³)	
15	min :	Summer	5.561	0.761	0.0	1.8		1.8	21.7	O K
30	min :	Summer	5.566	0.766	0.0	1.8		1.8	21.8	O K
60	min :	Summer	5.578	0.778	0.0	1.8		1.8	22.2	O K
120	min :	Summer	5.606	0.806	0.0	1.9		1.9	23.0	O K
180	min :	Summer	5.637	0.837	0.0	1.9		1.9	23.8	O K
240	min :	Summer	5.680	0.880	0.0	2.0		2.0	25.1	O K
360	min :	Summer	5.783	0.983	0.0	2.1		2.1	28.0	Flood Risk
480	min :	Summer	5.840	1.040	0.0	2.2		2.2	29.6	Flood Risk
600	min :	Summer	5.878	1.078	0.0	2.2		2.2	30.7	Flood Risk
720	min :	Summer	5.905	1.105	0.0	2.3		2.3	31.5	Flood Risk
960	min :	Summer	5.916	1.116	0.0	2.3		2.3	31.8	Flood Risk
1440	min :	Summer	5.807	1.007	0.0	2.1		2.1	28.7	Flood Risk
2160	min :	Summer	5.594	0.794	0.0	1.8		1.8	22.6	O K
2880	min :	Summer	5.580	0.780	0.0	1.8		1.8	22.2	O K
4320	min :	Summer	5.569	0.769	0.0	1.8		1.8	21.9	O K
5760	min :	Summer	5.564	0.764	0.0	1.8		1.8	21.8	O K
7200	min :	Summer	5.561	0.761	0.0	1.8		1.8	21.7	O K
8640	min :	Summer	5.559	0.759	0.0	1.8		1.8	21.6	O K
10080	min :	Summer	5.557	0.757	0.0	1.8		1.8	21.6	O K
15	min N	Winter	5.562	0.762	0.0	1.8		1.8	21.7	O K
30	min N	Winter	5.569	0.769	0.0	1.8		1.8	21.9	ОК

	Storm Event		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	101.754	0.0	93.0	580
30	min	Summer	67.708	0.0	95.0	580
60	min	Summer	43.136	0.0	97.4	502
120	min	Summer	26.651	0.0	99.8	500
180	min	Summer	19.868	0.0	101.3	500
240	min	Summer	16.054	0.0	102.4	408
360	min	Summer	11.891	0.0	104.1	364
480	min	Summer	9.596	0.0	105.4	410
600	min	Summer	8.121	0.0	106.5	430
720	min	Summer	7.083	0.0	107.4	490
960	min	Summer	5.703	0.0	108.9	584
1440	min	Summer	4.198	0.0	111.2	794
2160	min	Summer	3.085	0.0	113.7	584
2880	min	Summer	2.477	0.0	115.5	584
4320	min	Summer	1.816	0.0	118.4	584
5760	min	Summer	1.456	0.0	120.5	584
7200	min	Summer	1.227	0.0	122.3	584
8640	min	Summer	1.067	0.0	123.8	576
10080	min	Summer	0.948	0.0	125.2	576
15	min	Winter	101.754	0.0	93.7	580
30	min	Winter	67.708	0.0	96.0	580
		©198	2-2017	XP Sol	lutions	

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Misso
Date 02/07/2018 16:30	Designed by MA047950	Desinado
File CELLULARSTORAGE.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
60	min W	inter	5.584	0.784	0.0	1.8	1.8	22.3	O K
120	min W	inter	5.617	0.817	0.0	1.9	1.9	23.3	O K
180	min W	inter	5.656	0.856	0.0	1.9	1.9	24.4	O K
240	min W	inter	5.704	0.904	0.0	2.0	2.0	25.8	Flood Risk
360	min W	inter	5.825	1.025	0.0	2.2	2.2	29.2	Flood Risk
480	min W	inter	5.884	1.084	0.0	2.2	2.2	30.9	Flood Risk
600	min W	inter	5.920	1.120	0.0	2.3	2.3	31.9	Flood Risk
720	min W	inter	5.941	1.141	0.0	2.3	2.3	32.5	Flood Risk
960	min W	inter	5.928	1.128	0.0	2.3	2.3	32.2	Flood Risk
1440	min W	inter	5.796	0.996	0.0	2.1	2.1	28.4	Flood Risk
2160	min W	inter	5.609	0.809	0.0	1.9	1.9	23.1	O K
2880	min W	inter	5.587	0.787	0.0	1.8	1.8	22.4	O K
4320	min W	inter	5.574	0.774	0.0	1.8	1.8	22.1	O K
5760	min W	inter	5.567	0.767	0.0	1.8	1.8	21.9	O K
7200	min W	inter	5.562	0.762	0.0	1.8	1.8	21.7	O K
8640	min W	inter	5.559	0.759	0.0	1.8	1.8	21.6	O K
0800	min W	inter	5.556	0.756	0.0	1.8	1.8	21.6	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	.t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	43.136	0.0	98.6	502
120	min	Winter	26.651	0.0	101.3	500
180	min	Winter	19.868	0.0	103.0	410
240	min	Winter	16.054	0.0	104.3	390
360	min	Winter	11.891	0.0	106.2	356
480	min	Winter	9.596	0.0	107.6	410
600	min	Winter	8.121	0.0	108.8	452
720	min	Winter	7.083	0.0	109.9	502
960	min	Winter	5.703	0.0	111.5	620
1440	min	Winter	4.198	0.0	114.1	786
2160	min	Winter	3.085	0.0	116.9	648
2880	min	Winter	2.477	0.0	119.0	584
4320	min	Winter	1.816	0.0	122.1	584
5760	min	Winter	1.456	0.0	124.5	584
7200	min	Winter	1.227	0.0	126.5	584
8640	min	Winter	1.067	0.0	128.2	584
10080	min	Winter	0.948	0.0	129.7	584

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 02/07/2018 16:30	Designed by MA047950	Desinado
File CELLULARSTORAGE.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Rainfall Details

Rainfall Model FSR Winter Storms Yes Return Period (years) 30 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 20.000 Shortest Storm (mins) 150 Ratio R 0.350 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.032

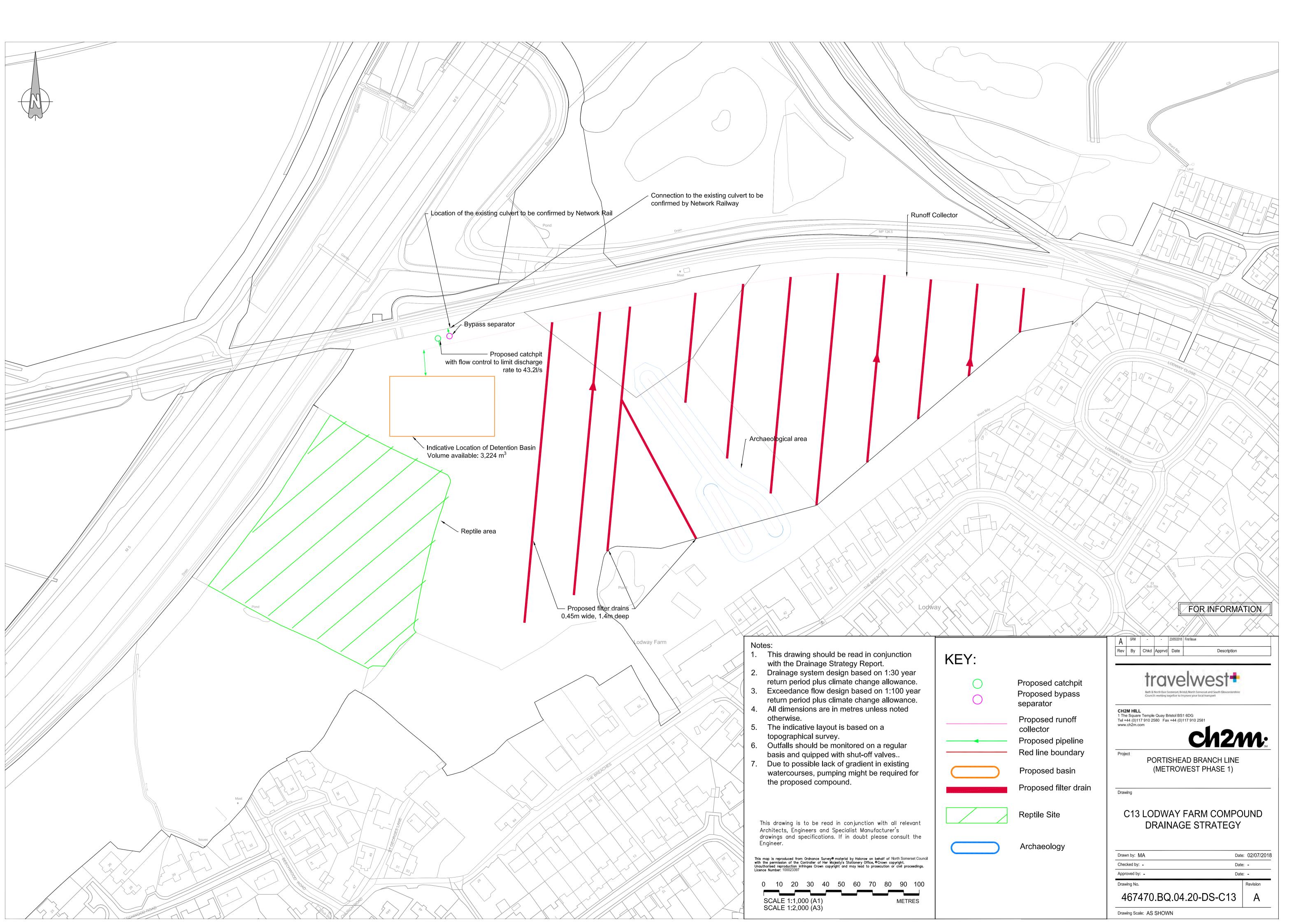
Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area	
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)	
0	3	0.011	3	6	0.011	6	9	0.010	

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Misso
Date 02/07/2018 16:30	Designed by MA047950	Desinado
File CELLULARSTORAGE.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017 1 2	

Model Details

Storage is Online Cover Level (m) 6.000

Cellular Storage Structure


Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000 30.0 0.0 1.201 0.0 0.0

1.200 30.0 0.0

Orifice Outflow Control

Diameter (m) 0.034 Discharge Coefficient 0.600 Invert Level (m) 5.000

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Missa
Date 02/07/2018 15:57	Designed by MA047950	Desipago
File BASIN.SRCX	Checked by	Drainage
XP Solutions	Source Control 2017 1 2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	13.997	0.497	29.0	925.2	ОК
30	min	Summer	14.142	0.642	33.6	1220.0	O K
60	min	Summer	14.286	0.786	37.6	1525.0	O K
120	min	Summer	14.417	0.917	40.9	1813.6	O K
180	min	Summer	14.478	0.978	42.3	1953.3	O K
240	min	Summer	14.511	1.011	43.1	2027.7	O K
360	min	Summer	14.540	1.040	43.8	2094.9	O K
480	min	Summer	14.553	1.053	44.0	2124.4	O K
600	min	Summer	14.559	1.059	44.2	2138.9	O K
720	min	Summer	14.561	1.061	44.2	2143.4	O K
960	min	Summer	14.556	1.056	44.1	2130.8	O K
1440	min	Summer	14.525	1.025	43.4	2059.2	O K
2160	min	Summer	14.461	0.961	41.9	1914.5	O K
2880	min	Summer	14.396	0.896	40.4	1768.3	O K
4320	min	Summer	14.280	0.780	37.4	1512.1	O K
5760	min	Summer	14.183	0.683	34.8	1307.1	O K
7200	min	Summer	14.106	0.606	32.5	1146.2	O K
8640	min	Summer	14.042	0.542	30.5	1015.8	O K
10080	min	Summer	13.990	0.490	28.7	911.0	O K
15	min	Winter	14.053	0.553	30.8	1037.6	O K
30	min	Winter	14.213	0.713	35.6	1369.5	O K
60	min	Winter	14.372	0.872	39.8	1714.0	O K

Storm			Rain	Flooded	Discharge	Time-Peak
Event			(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	79.950	0.0	876.9	30
30	min	Summer	53.199	0.0	1179.0	44
60	min	Summer	33.892	0.0	1578.0	72
120	min	Summer	20.940	0.0	1955.5	128
180	min	Summer	15.610	0.0	2189.1	186
240	min	Summer	12.614	0.0	2359.8	244
360	min	Summer	9.343	0.0	2623.0	344
480	min	Summer	7.540	0.0	2822.6	398
600	min	Summer	6.381	0.0	2985.0	462
720	min	Summer	5.565	0.0	3122.6	526
960	min	Summer	4.481	0.0	3348.2	662
1440	min	Summer	3.298	0.0	3678.0	936
2160	min	Summer	2.424	0.0	4136.9	1344
2880	min	Summer	1.946	0.0	4426.2	1740
4320	min	Summer	1.427	0.0	4851.2	2512
5760	min	Summer	1.144	0.0	5225.3	3240
7200	min	Summer	0.964	0.0	5501.9	3976
8640	min	Summer	0.839	0.0	5735.8	4688
0800	min	Summer	0.745	0.0	5930.2	5448
15	min	Winter	79.950	0.0	986.9	30
30	min	Winter	53.199	0.0	1324.2	43
60	min	Winter	33.892	0.0	1770.5	72
		©198	2-2017	XP Sol	Lutions	

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 02/07/2018 15:57	Designed by MA047950	Desinado
File BASIN.SRCX	Checked by	Drainage
XP Solutions	Source Control 2017.1.2	

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
			14.518 14.589		43.3 44.8	2044.5	0 K
240		Winter		1.127	45.7		
360	min	Winter	14.665	1.165	46.5	2389.7	O K
480	min	Winter	14.675	1.175	46.7	2412.4	O K
600	min	Winter	14.677	1.177	46.8	2418.1	O K
720	min	Winter	14.677	1.177	46.7	2416.5	O K
960	min	Winter	14.663	1.163	46.4	2382.8	O K
1440	min	Winter	14.609	1.109	45.3	2256.2	O K
2160	min	Winter	14.511	1.011	43.1	2028.3	O K
2880	min	Winter	14.415	0.915	40.8	1810.6	O K
4320	min	Winter	14.251	0.751	36.6	1450.6	O K
5760	min	Winter	14.124	0.624	33.0	1182.8	O K
7200	min	Winter	14.027	0.527	30.0	984.9	O K
8640	min	Winter	13.952	0.452	27.4	836.1	O K
10080	min	Winter	13.894	0.394	25.2	722.1	O K

Storm			m	Rain	Flooded	Discharge	Time-Peak
	Event		Event		Volume	Volume	(mins)
					(m³)	(m³)	
	120	min	Winter	20.940	0.0	2193.2	128
	180	min	Winter	15.610	0.0	2454.8	184
	240	min	Winter	12.614	0.0	2645.9	240
	360	min	Winter	9.343	0.0	2940.5	350
	480	min	Winter	7.540	0.0	3163.9	450
	600	min	Winter	6.381	0.0	3345.6	484
	720	min	Winter	5.565	0.0	3499.4	560
	960	min	Winter	4.481	0.0	3751.4	714
1	440	min	Winter	3.298	0.0	4117.4	1014
2	160	min	Winter	2.424	0.0	4635.4	1448
2	2880	min	Winter	1.946	0.0	4959.7	1856
4	320	min	Winter	1.427	0.0	5438.5	2644
5	760	min	Winter	1.144	0.0	5854.0	3400
7	200	min	Winter	0.964	0.0	6164.3	4112
8	640	min	Winter	0.839	0.0	6427.7	4848
10	080	min	Winter	0.745	0.0	6649.2	5552

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 02/07/2018 15:57	Designed by MA047950	Desinado
File BASIN.SRCX	Checked by	Drail laye
XP Solutions	Source Control 2017.1.2	<u>'</u>

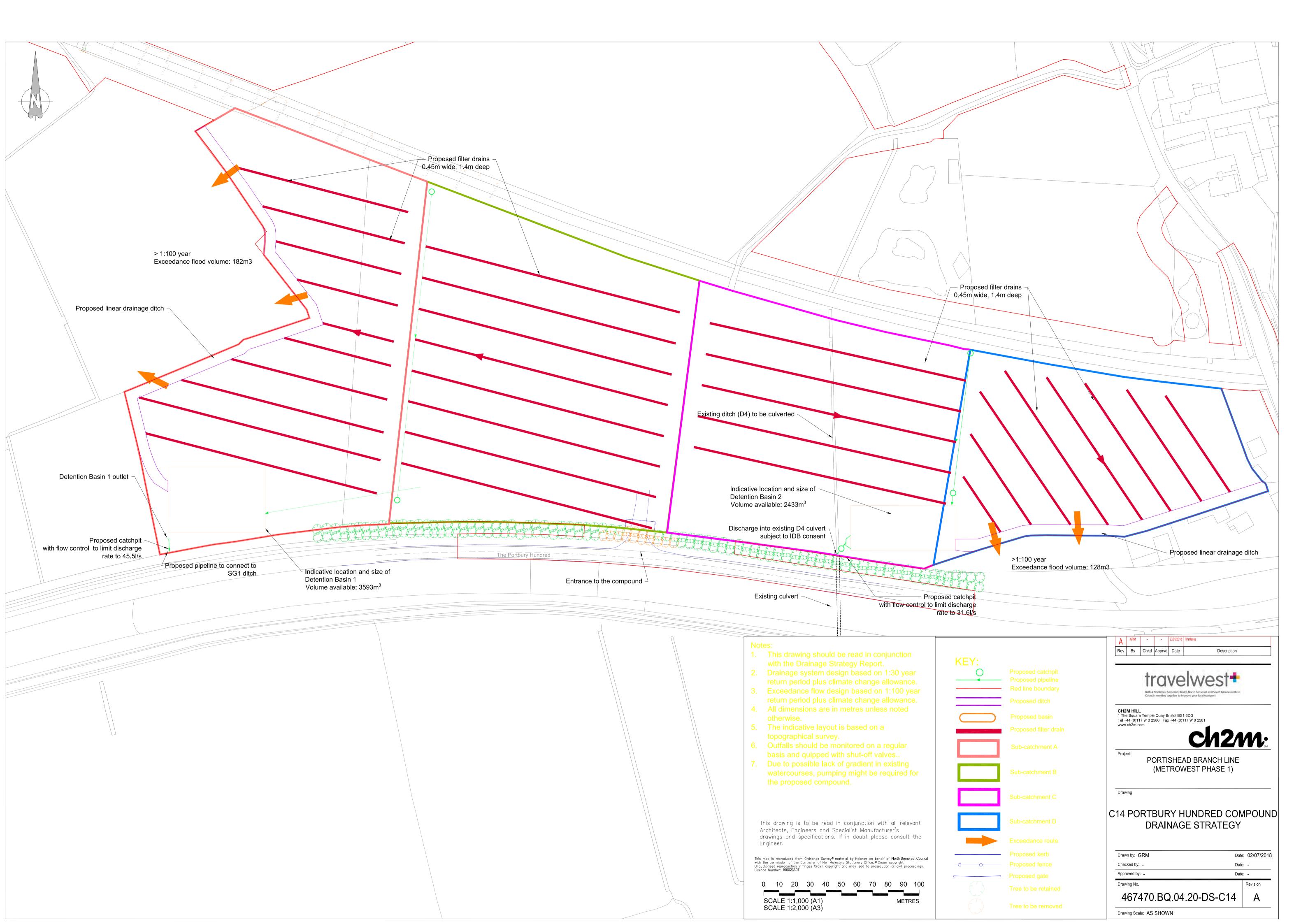
Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 6.360

Time	(mins)	Area									
From:	To:	(ha)									
0	4	1.590	4	8	1.590	8	12	1.590	12	16	1.590

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 02/07/2018 15:57	Designed by MA047950	Designation
File BASIN.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017 1 2	•


Storage is Online Cover Level (m) 15.000

Tank or Pond Structure

Invert Level (m) 13.500

Orifice Outflow Control

Diameter (m) 0.146 Discharge Coefficient 0.600 Invert Level (m) 13.500

CH2M		Page 1
Ash House		
Falcon Road		L.
Exeter EX2 7LB		Micro
Date 25/06/2018 13:52	Designed by MA047950	Desinado
File BASIN1_RP1;5.SRCX	Checked by	Drainage
VD Solutions	Source Control 2017 1 2	•

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
1.5			4 004	0 204	00.0	665 7	0 77
		Summer			22.0		O K
		Summer			25.7		O K
		Summer					O K
120	min	Summer	5.096	0.596	31.7	1269.2	ОК
180	min	Summer	5.140	0.640	33.1	1372.4	O K
240	min	Summer	5.166	0.666	33.8	1432.0	O K
360	min	Summer	5.191	0.691	34.5	1490.8	ОК
480	min	Summer	5.206	0.706	34.9	1525.9	ОК
600	min	Summer	5.215	0.715	35.2	1547.5	ОК
720	min	Summer	5.220	0.720	35.3	1559.8	O K
960	min	Summer	5.222	0.722	35.4	1564.8	O K
1440	min	Summer	5.209	0.709	35.0	1532.6	O K
2160	min	Summer	5.171	0.671	34.0	1445.4	O K
2880	min	Summer	5.130	0.630	32.8	1349.9	O K
4320	min	Summer	5.054	0.554	30.5	1175.2	O K
5760	min	Summer	4.992	0.492	28.4	1033.7	O K
7200	min	Summer	4.940	0.440	26.6	919.6	O K
8640	min	Summer	4.898	0.398	25.0	826.5	O K
10080	min	Summer	4.863	0.363	23.6	749.3	O K
15	min	Winter	4.861	0.361	23.6	746.2	ОК
30	min	Winter	4.963	0.463	27.4	969.4	ОК
60	min	Winter	5.066	0.566	30.8	1201.3	ОК

Storm			Rain	Flooded	Discharge	Time-Peak
Event			(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	54.369	0.0	599.3	26
30	min	Summer	35.674	0.0	802.2	40
60	min	Summer	22.554	0.0	1088.1	68
120	min	Summer	13.956	0.0	1354.0	126
180	min	Summer	10.476	0.0	1528.2	184
240	min	Summer	8.532	0.0	1661.7	242
360	min	Summer	6.379	0.0	1866.1	318
480	min	Summer	5.186	0.0	2023.6	382
600	min	Summer	4.414	0.0	2153.4	444
720	min	Summer	3.869	0.0	2264.4	512
960	min	Summer	3.142	0.0	2448.6	650
1440	min	Summer	2.342	0.0	2724.1	924
2160	min	Summer	1.744	0.0	3124.7	1328
2880	min	Summer	1.415	0.0	3377.4	1732
4320	min	Summer	1.054	0.0	3753.9	2504
5760	min	Summer	0.855	0.0	4108.0	3232
7200	min	Summer	0.727	0.0	4362.1	3968
8640	min	Summer	0.637	0.0	4576.0	4672
0800.	min	Summer	0.569	0.0	4753.2	5440
15	min	Winter	54.369	0.0	677.6	26
30	\min	Winter	35.674	0.0	904.4	40
60	min	Winter	22.554	0.0	1222.7	68
		©198	2-2017	XP Sol	lutions	

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/06/2018 13:52	Designed by MA047950	Desinado
File BASIN1_RP1;5.SRCX	Checked by	Drain laye
XP Solutions	Source Control 2017 1 2	'

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
120	min	Winter	5.165	0.665	33.8	1430.1	ОК
180	min	Winter	5.216	0.716	35.2	1550.6	O K
240	min	Winter	5.246	0.746	36.0	1622.7	O K
360	min	Winter	5.276	0.776	36.8	1694.6	O K
480	min	Winter	5.287	0.787	37.1	1720.5	O K
600	min	Winter	5.295	0.795	37.3	1739.9	O K
720	min	Winter	5.298	0.798	37.4	1746.3	ОК
960	min	Winter	5.293	0.793	37.2	1733.7	O K
1440	min	Winter	5.261	0.761	36.4	1658.6	O K
2160	min	Winter	5.199	0.699	34.7	1509.5	O K
2880	min	Winter	5.136	0.636	32.9	1361.7	O K
4320	min	Winter	5.027	0.527	29.6	1112.8	O K
5760	min	Winter	4.943	0.443	26.7	925.5	O K
7200	min	Winter	4.879	0.379	24.3	785.3	O K
8640	min	Winter	4.830	0.330	22.3	678.8	O K
0800	min	Winter	4.792	0.292	20.5	596.9	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
120	min	Winter	13.956	0.0	1520.5	124
180	min	Winter	10.476	0.0	1715.7	180
240	min	Winter	8.532	0.0	1865.2	238
360	min	Winter	6.379	0.0	2094.1	344
480	min	Winter	5.186	0.0	2270.5	400
600	min	Winter	4.414	0.0	2415.7	470
720	min	Winter	3.869	0.0	2540.0	548
960	min	Winter	3.142	0.0	2746.1	702
1440	min	Winter	2.342	0.0	3053.4	1000
2160	min	Winter	1.744	0.0	3502.4	1428
2880	min	Winter	1.415	0.0	3785.8	1828
4320	min	Winter	1.054	0.0	4211.0	2604
5760	min	Winter	0.855	0.0	4602.9	3352
7200	min	Winter	0.727	0.0	4888.3	4104
8640	min	Winter	0.637	0.0	5129.6	4832
10080	min	Winter	0.569	0.0	5332.3	5544

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Misco
Date 25/06/2018 13:52	Designed by MA047950	Desinado
File BASIN1_RP1;5.SRCX	Checked by	Diali lade
XP Solutions	Source Control 2017.1.2	

Rainfall Model FSR Winter Storms Yes Return Period (years) 5 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 20.000 Shortest Storm (mins) 15 Ratio R 0.350 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 6.700

	(mins)							
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	2.233	4	8	2.233	8	12	2.233

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/06/2018 13:52	Designed by MA047950	Desinado
File BASIN1_RP1;5.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017 1 2	•

Storage is Online Cover Level (m) 6.000

Tank or Pond Structure

Invert Level (m) 4.500

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 1968.0 1.500 2850.0

Orifice Outflow Control

Diameter (m) 0.145 Discharge Coefficient 0.600 Invert Level (m) 4.500

CH2M		Page 1
Ash House		
Falcon Road		L.
Exeter EX2 7LB		Mirco
Date 25/06/2018 13:54	Designed by MA047950	Designado
File BASIN2_RP1;5.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
15	min	Summer	4.843	0.343	15.7	462.1	O K
30	min	Summer	4.938	0.438	18.2	599.7	ОК
60	min	Summer	5.034	0.534	20.4	741.7	ОК
120	min	Summer	5.124	0.624	22.2	879.6	ОК
180	min	Summer	5.169	0.669	23.1	950.0	O K
240	min	Summer	5.194	0.694	23.5	990.3	O K
360	min	Summer	5.218	0.718	24.0	1029.0	O K
480	min	Summer	5.232	0.732	24.2	1051.4	O K
600	min	Summer	5.241	0.741	24.4	1064.6	O K
720	min	Summer	5.245	0.745	24.5	1071.5	O K
960	min	Summer	5.245	0.745	24.5	1072.0	O K
1440	min	Summer	5.229	0.729	24.2	1045.5	O K
2160	min	Summer	5.189	0.689	23.4	981.3	O K
2880	min	Summer	5.145	0.645	22.6	913.4	O K
4320	min	Summer	5.066	0.566	21.0	791.0	O K
5760	min	Summer	5.001	0.501	19.6	692.3	O K
7200	min	Summer	4.947	0.447	18.4	612.7	O K
8640	min	Summer	4.903	0.403	17.3	547.6	O K
10080	min	Summer	4.866	0.366	16.4	494.0	O K
15	min	Winter	4.882	0.382	16.8	518.2	O K
30	min	Winter	4.988	0.488	19.4	673.1	O K
60	min	Winter	5.094	0.594	21.6	833.8	O K

	Storm Event		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	54.369	0.0	432.8	26
30	min	Summer	35.674	0.0	575.5	40
60	min	Summer	22.554	0.0	766.5	68
120	min	Summer	13.956	0.0	952.1	126
180	min	Summer	10.476	0.0	1073.8	184
240	min	Summer	8.532	0.0	1167.0	242
360	min	Summer	6.379	0.0	1309.9	318
480	min	Summer	5.186	0.0	1420.1	382
600	min	Summer	4.414	0.0	1511.0	444
720	min	Summer	3.869	0.0	1589.0	512
960	min	Summer	3.142	0.0	1718.6	650
1440	min	Summer	2.342	0.0	1913.7	926
2160	min	Summer	1.744	0.0	2180.5	1328
2880	min	Summer	1.415	0.0	2357.3	1732
4320	min	Summer	1.054	0.0	2623.5	2508
5760	min	Summer	0.855	0.0	2860.9	3232
7200	min	Summer	0.727	0.0	3038.6	3968
8640	min	Summer	0.637	0.0	3189.5	4680
0800.	min	Summer	0.569	0.0	3316.2	5440
15	\min	Winter	54.369	0.0	487.8	26
30	\min	Winter	35.674	0.0	647.3	40
60	min	Winter	22.554	0.0	860.4	68

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/06/2018 13:54	Designed by MA047950	Desinado
File BASIN2_RP1;5.SRCX	Checked by	Dialilage
XD Solutions	Source Control 2017 1 2	

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
120	min	Winter	5.195	0.695	23.6	991.7	ОК
180	min	Winter	5.247	0.747	24.5	1074.4	O K
240	min	Winter	5.277	0.777	25.0	1123.5	O K
360	min	Winter	5.307	0.807	25.6	1171.7	O K
480	min	Winter	5.316	0.816	25.7	1187.9	O K
600	min	Winter	5.324	0.824	25.8	1199.8	O K
720	min	Winter	5.325	0.825	25.9	1202.8	O K
960	min	Winter	5.319	0.819	25.8	1191.5	O K
1440	min	Winter	5.285	0.785	25.2	1135.7	O K
2160	min	Winter	5.218	0.718	24.0	1028.5	O K
2880	min	Winter	5.152	0.652	22.8	923.9	O K
4320	min	Winter	5.039	0.539	20.5	749.2	O K
5760	min	Winter	4.951	0.451	18.5	618.4	O K
7200	min	Winter	4.884	0.384	16.8	520.6	O K
8640	min	Winter	4.832	0.332	15.4	446.2	O K
10080	min	Winter	4.791	0.291	14.2	389.0	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
120	min	Winter	13.956	0.0	1068.3	124
180	min	Winter	10.476	0.0	1204.5	180
240	min	Winter	8.532	0.0	1309.0	238
360	min	Winter	6.379	0.0	1469.0	346
480	min	Winter	5.186	0.0	1592.4	400
600	min	Winter	4.414	0.0	1694.2	470
720	min	Winter	3.869	0.0	1781.4	548
960	min	Winter	3.142	0.0	1926.4	702
1440	min	Winter	2.342	0.0	2143.9	1000
2160	min	Winter	1.744	0.0	2443.3	1428
2880	min	Winter	1.415	0.0	2641.6	1844
4320	min	Winter	1.054	0.0	2941.7	2604
5760	min	Winter	0.855	0.0	3205.1	3352
7200	min	Winter	0.727	0.0	3404.5	4104
8640	min	Winter	0.637	0.0	3574.3	4840
10080	min	Winter	0.569	0.0	3718.6	5544

CH2M		Page 3
Ash House		
Falcon Road		L.
Exeter EX2 7LB		Micro
Date 25/06/2018 13:54	Designed by MA047950	Desinado
File BASIN2_RP1;5.SRCX	Checked by	Diali lade
XP Solutions	Source Control 2017.1.2	

Rainfall Model FSR Winter Storms Yes
Return Period (years) 5 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 15
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 4.660

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area	
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)	
0	4	1.553	4	8	1.553	8	12	1.553	

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/06/2018 13:54	Designed by MA047950	Desinado
File BASIN2_RP1;5.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017 1 2	•

Storage is Online Cover Level (m) 6.000

Tank or Pond Structure

Invert Level (m) 4.500

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 1271.0 1.500 2000.0

Orifice Outflow Control

Diameter (m) 0.119 Discharge Coefficient 0.600 Invert Level (m) 4.500

CH2M		Page 1
Ash House		
Falcon Road		L.
Exeter EX2 7LB		Micro
Date 25/06/2018 13:46	Designed by MA047950	Designado
File BASIN1_RP1;10.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
1.5	m + m	Summer	1 071	0 274	24.1	773.4	ОК
		Summer		0.374	28.1		O K
		Summer			31.5		O K
		Summer	5.192	0.692	34.5		O K
		Summer			35.9		O K
		Summer			36.7		O K
		Summer			37.4	1749.2	O K
		Summer		0.814	37.8		O K
		Summer	5.323	0.823	38.0	1806.6	O K
		Summer			38.1		ОК
		Summer			38.2		ОК
		Summer		0.812	37.7		O K
		Summer		0.769	36.6		O K
		Summer	5.223	0.723	35.4	1565.8	ОК
4320	min	Summer	5.135	0.635	32.9	1361.5	ОК
5760	min	Summer	5.063	0.563	30.7	1193.9	ОК
7200	min	Summer	5.003	0.503	28.8	1059.7	ОК
8640	min	Summer	4.954	0.454	27.1	949.4	ОК
10080	min	Summer	4.913	0.413	25.6	860.0	O K
15	min	Winter	4.917	0.417	25.7	867.0	O K
30	min	Winter	5.036	0.536	29.9	1133.4	O K
60	min	Winter	5.157	0.657	33.5	1410.5	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	63.115	0.0	704.2	26
30	min	Summer	41.638	0.0	944.5	40
60	min	Summer	26.403	0.0	1279.5	68
120	min	Summer	16.328	0.0	1589.8	126
180	min	Summer	12.224	0.0	1788.7	184
240	min	Summer	9.925	0.0	1938.4	242
360	min	Summer	7.394	0.0	2168.2	336
480	min	Summer	5.994	0.0	2344.1	392
600	min	Summer	5.090	0.0	2488.1	454
720	min	Summer	4.453	0.0	2610.8	520
960	min	Summer	3.604	0.0	2813.4	658
1440	min	Summer	2.673	0.0	3112.1	932
2160	min	Summer	1.981	0.0	3551.6	1344
2880	min	Summer	1.601	0.0	3823.5	1736
4320	min	Summer	1.185	0.0	4226.2	2512
5760	min	Summer	0.957	0.0	4599.6	3240
7200	min	Summer	0.811	0.0	4868.0	3968
8640	min	Summer	0.708	0.0	5093.9	4688
0800.	min	Summer	0.632	0.0	5280.8	5448
15	min	Winter	63.115	0.0	794.9	26
30	\min	Winter	41.638	0.0	1063.3	40
60	min	Winter	26.403	0.0	1437.1	68
©1982-2017			XP Sol	lutions		

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Misco
Date 25/06/2018 13:46	Designed by MA047950	Desinado
File BASIN1_RP1;10.SRCX	Checked by	Diali large
XP Solutions	Source Control 2017.1.2	•

	Stor Even		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
120	min	Winter	5.271	0.771	36.7	1682.2	ОК
180	min	Winter	5.330	0.830	38.2	1823.3	O K
240	min	Winter	5.364	0.864	39.0	1906.7	O K
360	min	Winter	5.398	0.898	39.9	1992.0	O K
480	min	Winter	5.410	0.910	40.2	2020.1	O K
600	min	Winter	5.416	0.916	40.3	2036.7	O K
720	min	Winter	5.419	0.919	40.4	2043.3	ОК
960	min	Winter	5.413	0.913	40.2	2028.3	O K
1440	min	Winter	5.378	0.878	39.4	1941.6	O K
2160	min	Winter	5.307	0.807	37.6	1769.0	O K
2880	min	Winter	5.236	0.736	35.7	1597.3	O K
4320	min	Winter	5.111	0.611	32.2	1305.3	O K
5760	min	Winter	5.014	0.514	29.2	1083.3	O K
7200	min	Winter	4.939	0.439	26.6	916.3	ОК
8640	min	Winter	4.881	0.381	24.4	788.8	ОК
0800	min	Winter	4.835	0.335	22.5	690.1	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	.t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
120	min	Winter	16.328	0.0	1784.6	124
180	min	Winter	12.224	0.0	2007.3	182
240	min	Winter	9.925	0.0	2175.0	238
360	min	Winter	7.394	0.0	2432.3	348
480	min	Winter	5.994	0.0	2629.1	444
600	min	Winter	5.090	0.0	2790.2	478
720	min	Winter	4.453	0.0	2927.5	554
960	min	Winter	3.604	0.0	3153.9	710
1440	min	Winter	2.673	0.0	3485.9	1010
2160	min	Winter	1.981	0.0	3980.5	1436
2880	min	Winter	1.601	0.0	4285.4	1848
4320	min	Winter	1.185	0.0	4739.7	2640
5760	min	Winter	0.957	0.0	5153.5	3400
7200	min	Winter	0.811	0.0	5454.8	4112
8640	min	Winter	0.708	0.0	5709.5	4848
10080	min	Winter	0.632	0.0	5923.3	5552

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Misco
Date 25/06/2018 13:46	Designed by MA047950	Desipago
File BASIN1_RP1;10.SRCX	Checked by	Diali lade
XP Solutions	Source Control 2017.1.2	

Rainfall Model FSR Winter Storms Yes Return Period (years) 10 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 20.000 Shortest Storm (mins) 15 Ratio R 0.350 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 6.700

	(mins)							
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)
0	4	2.233	4	8	2.233	8	12	2.233

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Misso
Date 25/06/2018 13:46	Designed by MA047950	Desinado
File BASIN1_RP1;10.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Storage is Online Cover Level (m) 6.000

Tank or Pond Structure

Invert Level (m) 4.500

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 1968.0 1.500 2850.0

Orifice Outflow Control

Diameter (m) 0.145 Discharge Coefficient 0.600 Invert Level (m) 4.500

CH2M		Page 1
Ash House		
Falcon Road		L.
Exeter EX2 7LB		Micco
Date 25/06/2018 13:55	Designed by MA047950	Desinado
File BASIN2_RP1;10.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	min	Summer Summer Summer Summer	4.895 5.007 5.118 5.223 5.274 5.303 5.329 5.343 5.355 5.354 5.355 5.354 5.329 5.289 5.240 5.150	0.395 0.507 0.618 0.723 0.774 0.803 0.829 0.843 0.851 0.855 0.854 0.835 0.789	17.1 19.8 22.1 24.1 25.0 25.5 25.9 26.2 26.3 26.4 26.4 26.0 25.3	537.1 701.4 871.3 1035.5 1118.4 1165.3 1209.3 1232.2 1245.3 1251.9 1251.0 1218.7 1143.5 1064.2 921.3	O K O K O K O K O K O K O K O K O K O K
7200 8640 10080 15 30	min min min min	Summer Summer Summer Summer Winter Winter Winter	5.013 4.962 4.919 4.940 5.064	0.513 0.462 0.419 0.440 0.564	19.9 18.7 17.7 18.2 21.0 23.4	710.9 634.2 571.8	0 K 0 K 0 K 0 K 0 K 0 K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	63.115	0.0	506.5	26
30	min	Summer	41.638	0.0	675.5	40
60	min	Summer	26.403	0.0	900.0	68
120	min	Summer	16.328	0.0	1116.6	126
180	min	Summer	12.224	0.0	1255.5	184
240	min	Summer	9.925	0.0	1360.1	242
360	min	Summer	7.394	0.0	1520.7	336
480	min	Summer	5.994	0.0	1643.8	392
600	min	Summer	5.090	0.0	1744.8	456
720	min	Summer	4.453	0.0	1830.9	520
960	min	Summer	3.604	0.0	1973.4	658
1440	min	Summer	2.673	0.0	2185.1	932
2160	min	Summer	1.981	0.0	2477.6	1344
2880	min	Summer	1.601	0.0	2667.9	1736
4320	min	Summer	1.185	0.0	2952.4	2512
5760	min	Summer	0.957	0.0	3202.8	3248
7200	min	Summer	0.811	0.0	3390.5	3976
8640	min	Summer	0.708	0.0	3549.7	4752
0800.	min	Summer	0.632	0.0	3683.4	5448
15	min	Winter	63.115	0.0	570.3	26
30	min	Winter	41.638	0.0	759.0	40
60	min	Winter	26.403	0.0	1009.9	68
		©198	2-2017	XP Sol	lutions	

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/06/2018 13:55	Designed by MA047950	Desinado
File BASIN2_RP1;10.SRCX	Checked by	Diali lade
XD Solutions	Source Control 2017 1 2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
120	min	Winter	5.304	0.804	25.5	1167.3	O K
180	min	Winter	5.363	0.863	26.5	1264.5	O K
240	min	Winter	5.397	0.897	27.0	1321.5	O K
360	min	Winter	5.431	0.931	27.6	1379.4	O K
480	min	Winter	5.441	0.941	27.8	1397.5	O K
600	min	Winter	5.447	0.947	27.8	1407.1	O K
720	min	Winter	5.449	0.949	27.9	1410.4	O K
960	min	Winter	5.441	0.941	27.8	1397.6	O K
1440	min	Winter	5.404	0.904	27.2	1333.8	O K
2160	min	Winter	5.330	0.830	26.0	1210.4	O K
2880	min	Winter	5.256	0.756	24.7	1089.2	O K
4320	min	Winter	5.127	0.627	22.3	884.5	O K
5760	min	Winter	5.026	0.526	20.2	729.3	O K
7200	min	Winter	4.947	0.447	18.4	612.5	O K
8640	min	Winter	4.886	0.386	16.9	523.5	O K
10080	min	Winter	4.838	0.338	15.6	454.5	O K

Storm			Rain	Flooded	Discharge	Time-Peak
Event			(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
120	min	Winter	16.328	0.0	1252.5	124
180	min	Winter	12.224	0.0	1408.0	182
240	min	Winter	9.925	0.0	1525.1	238
360	min	Winter	7.394	0.0	1704.9	348
480	min	Winter	5.994	0.0	1842.7	446
600	min	Winter	5.090	0.0	1955.6	478
720	min	Winter	4.453	0.0	2052.0	556
960	min	Winter	3.604	0.0	2211.2	710
1440	min	Winter	2.673	0.0	2446.4	1012
2160	min	Winter	1.981	0.0	2776.1	1440
2880	min	Winter	1.601	0.0	2989.4	1852
4320	min	Winter	1.185	0.0	3309.7	2640
5760	min	Winter	0.957	0.0	3588.1	3400
7200	min	Winter	0.811	0.0	3798.6	4112
8640	min	Winter	0.708	0.0	3977.8	4848
10080	min	Winter	0.632	0.0	4129.9	5552

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/06/2018 13:55	Designed by MA047950	Desinado
File BASIN2_RP1;10.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Rainfall Model FSR Winter Storms Yes
Return Period (years) 10 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 150
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 4.660

Time	(mins)	Area	Time	(mins)	Area	Time	(mins)	Area	
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)	
0	4	1.553	4	8	1.553	8	12	1.553	

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/06/2018 13:55	Designed by MA047950	Desinado
File BASIN2_RP1;10.SRCX	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Storage is Online Cover Level (m) 6.000

Tank or Pond Structure

Invert Level (m) 4.500

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 1271.0 1.500 2000.0

Orifice Outflow Control

Diameter (m) 0.119 Discharge Coefficient 0.600 Invert Level (m) 4.500

	Page 1
	L.
	Micco
Designed by MA047950	Desinado
Checked by	Drainage
Source Control 2017.1.2	
	Checked by

Storm Event		Max Level	Max Depth	Max Control	Max Volume	Status	
			(m)	(m)	(l/s)	(m³)	
15	min	Summer	4 740	0 240	17.9	487.2	ОК
		Summer			21.5		O K
		Summer			24.5		O K
		Summer			27.0		O K
		Summer			28.0		O K
		Summer			28.5		O K
		Summer			28.9		ОК
		Summer			29.2		O K
			5.018		29.3		ОК
		Summer			29.3		ОК
		Summer			29.1		ОК
		Summer			28.4		O K
		Summer			27.1		O K
		Summer			25.8		ОК
		Summer			23.4		O K
5760	min	Summer	4.809	0.309	21.4	634.6	ОК
7200	min	Summer	4.774	0.274	19.7	559.6	ОК
8640	min	Summer	4.747	0.247	18.3	502.7	ОК
10080	min	Summer	4.726	0.226	17.2	458.1	ОК
15	min	Winter	4.768	0.268	19.4	545.9	ОК
30	min	Winter	4.848	0.348	23.0	718.3	ОК
60	min	Winter	4.930	0.430	26.2	895.5	ОК

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	79.950	0.0	426.6	30
30	min	Summer	53.199	0.0	584.7	43
60	min	Summer	33.892	0.0	809.2	72
120	min	Summer	20.940	0.0	1007.3	128
180	min	Summer	15.610	0.0	1129.8	184
240	min	Summer	12.614	0.0	1219.3	240
360	min	Summer	9.343	0.0	1357.2	300
480	min	Summer	7.540	0.0	1461.6	362
600	min	Summer	6.381	0.0	1546.5	428
720	min	Summer	5.565	0.0	1618.5	498
960	min	Summer	4.481	0.0	1736.3	634
1440	min	Summer	3.298	0.0	1908.8	908
2160	min	Summer	2.424	0.0	2164.0	1304
2880	min	Summer	1.946	0.0	2313.6	1684
4320	min	Summer	1.427	0.0	2527.1	2432
5760	min	Summer	1.144	0.0	2743.2	3176
7200	min	Summer	0.964	0.0	2886.6	3896
8640	min	Summer	0.839	0.0	3005.3	4584
0800.	min	Summer	0.745	0.0	3099.3	5256
15	min	Winter	79.950	0.0	484.1	29
30	min	Winter	53.199	0.0	661.3	43
60	min	Winter	33.892	0.0	910.3	70
		©198	2-2017	XP Sol	lutions	

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Misso
Date 25/06/2018 14:00	Designed by MA047950	Desinado
File Basin1_50%permeability	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
120	min	Winter	5.004	0.504	28.8	1060.6	ОК
180	min	Winter	5.038	0.538	29.9	1137.2	O K
240	min	Winter	5.054	0.554	30.5	1175.2	O K
360	min	Winter	5.067	0.567	30.9	1204.8	O K
480	min	Winter	5.072	0.572	31.0	1216.4	O K
600	min	Winter	5.073	0.573	31.1	1218.0	O K
720	min	Winter	5.070	0.570	31.0	1210.9	O K
960	min	Winter	5.057	0.557	30.6	1181.6	O K
1440	min	Winter	5.020	0.520	29.4	1098.1	O K
2160	min	Winter	4.961	0.461	27.4	965.8	O K
2880	min	Winter	4.908	0.408	25.4	848.5	O K
4320	min	Winter	4.826	0.326	22.1	669.5	O K
5760	min	Winter	4.769	0.269	19.4	548.0	O K
7200	min	Winter	4.729	0.229	17.4	465.4	O K
8640	min	Winter	4.704	0.204	15.8	413.3	ОК
10080	min	Winter	4.689	0.189	14.2	382.0	O K

Storm			Rain	Flooded	Discharge	Time-Peak				
	Event		Event		Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)					
120	min	Winter	20.940	0.0	1132.3	126				
180	min	Winter	15.610	0.0	1269.5	182				
240	min	Winter	12.614	0.0	1369.8	236				
360	min	Winter	9.343	0.0	1524.3	338				
480	min	Winter	7.540	0.0	1641.3	382				
600	min	Winter	6.381	0.0	1736.5	458				
720	min	Winter	5.565	0.0	1817.2	536				
960	min	Winter	4.481	0.0	1949.3	686				
1440	min	Winter	3.298	0.0	2142.7	976				
2160	min	Winter	2.424	0.0	2426.5	1388				
2880	min	Winter	1.946	0.0	2594.8	1788				
4320	min	Winter	1.427	0.0	2836.4	2520				
5760	min	Winter	1.144	0.0	3074.4	3240				
7200	min	Winter	0.964	0.0	3235.7	3960				
8640	min	Winter	0.839	0.0	3370.0	4592				
10080	min	Winter	0.745	0.0	3478.4	5344				

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Misco
Date 25/06/2018 14:00	Designed by MA047950	Desinado
File Basin1_50%permeability	Checked by	Diali lade
XP Solutions	Source Control 2017.1.2	

Rainfall Model FSR Winter Storms Yes
Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 150
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 3.350

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.837	4	8	0.837	8	12	0.838	12	16	0.838

CH2M		Page 4
Ash House		
Falcon Road		Y.
Exeter EX2 7LB		Micco
Date 25/06/2018 14:00	Designed by MA047950	Desinado
File Basin1_50%permeability	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Storage is Online Cover Level (m) 6.000

Tank or Pond Structure

Invert Level (m) 4.500

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 1968.0 1.500 2850.0

Orifice Outflow Control

Diameter (m) 0.145 Discharge Coefficient 0.600 Invert Level (m) 4.500

	Page 1
	4
	Micco
Designed by MA047950	Desinado
Checked by	Diamage
Source Control 2017.1.2	
	Checked by

	Stor		Max Level	Max	Max Control	Max	Status
	FACII	·C		(m)	(1/s)	(m³)	
			(m)	(111)	(I/S)	(11113)	
15	min	Summer	4.754	0.254	13.0	337.6	ОК
30	min	Summer	4.830	0.330	15.4	443.8	O K
60	min	Summer	4.906	0.406	17.4	552.2	ОК
120	min	Summer	4.973	0.473	19.0	651.1	ОК
180	min	Summer	5.003	0.503	19.7	695.0	O K
240	min	Summer	5.016	0.516	20.0	714.8	O K
360	min	Summer	5.029	0.529	20.2	734.2	O K
480	min	Summer	5.035	0.535	20.4	743.9	O K
600	min	Summer	5.037	0.537	20.4	747.3	O K
720	min	Summer	5.037	0.537	20.4	746.3	O K
960	min	Summer	5.030	0.530	20.3	735.9	O K
1440	min	Summer	5.006	0.506	19.8	700.0	O K
2160	min	Summer	4.964	0.464	18.8	637.4	O K
2880	min	Summer	4.924	0.424	17.9	578.6	O K
4320	min	Summer	4.858	0.358	16.2	483.2	O K
5760	min	Summer	4.808	0.308	14.7	412.6	O K
7200	min	Summer	4.770	0.270	13.6	359.7	O K
8640	min	Summer	4.741	0.241	12.6	319.1	O K
10080	min	Summer	4.718	0.218	11.8	287.0	O K
15	min	Winter	4.784	0.284	14.0	378.5	O K
30	min	Winter	4.869	0.369	16.4	498.3	O K
60	min	Winter	4.953	0.453	18.5	620.9	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	79.950	0.0	311.4	29
30	min	Summer	53.199	0.0	422.7	43
60	min	Summer	33.892	0.0	572.0	72
120	min	Summer	20.940	0.0	710.2	128
180	min	Summer	15.610	0.0	795.8	184
240	min	Summer	12.614	0.0	858.4	240
360	min	Summer	9.343	0.0	954.8	300
480	min	Summer	7.540	0.0	1028.0	362
600	min	Summer	6.381	0.0	1087.6	428
720	min	Summer	5.565	0.0	1138.1	498
960	min	Summer	4.481	0.0	1221.1	634
1440	min	Summer	3.298	0.0	1343.7	908
2160	min	Summer	2.424	0.0	1511.7	1304
2880	min	Summer	1.946	0.0	1616.9	1688
4320	min	Summer	1.427	0.0	1769.0	2432
5760	min	Summer	1.144	0.0	1911.5	3176
7200	min	Summer	0.964	0.0	2012.2	3896
8640	min	Summer	0.839	0.0	2096.5	4592
10080	min	Summer	0.745	0.0	2164.8	5344
15	min	Winter	79.950	0.0	351.9	29
30	\min	Winter	53.199	0.0	476.4	43
60	min	Winter	33.892	0.0	642.5	70
		©198	2-2017	XP Sol	lutions	

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/06/2018 14:06	Designed by MA047950	Desinado
File Basin2_50%permeability	Checked by	Diamage
XD Solutions	Source Control 2017 1 2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
120	min	Winter	5.029	0.529	20.2	734.3	ОК
180	min	Winter	5.063	0.563	21.0	786.2	O K
240	min	Winter	5.080	0.580	21.3	811.4	O K
360	min	Winter	5.092	0.592	21.6	829.8	O K
480	min	Winter	5.096	0.596	21.6	836.2	O K
600	min	Winter	5.095	0.595	21.6	835.5	O K
720	min	Winter	5.091	0.591	21.6	829.0	O K
960	min	Winter	5.076	0.576	21.2	805.9	O K
1440	min	Winter	5.035	0.535	20.4	743.8	O K
2160	min	Winter	4.971	0.471	19.0	648.0	O K
2880	min	Winter	4.914	0.414	17.6	564.6	O K
4320	min	Winter	4.826	0.326	15.3	438.3	O K
5760	min	Winter	4.765	0.265	13.4	352.7	O K
7200	min	Winter	4.723	0.223	11.9	294.2	O K
8640	min	Winter	4.693	0.193	10.8	253.0	O K
10080	\min	Winter	4.672	0.172	9.9	224.6	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
120	min	Winter	20.940	0.0	797.4	126
180	min	Winter	15.610	0.0	893.3	182
240	min	Winter	12.614	0.0	963.4	236
360	min	Winter	9.343	0.0	1071.4	338
480	min	Winter	7.540	0.0	1153.4	382
600	min	Winter	6.381	0.0	1220.2	458
720	min	Winter	5.565	0.0	1276.8	536
960	min	Winter	4.481	0.0	1369.9	686
1440	min	Winter	3.298	0.0	1507.1	976
2160	min	Winter	2.424	0.0	1694.4	1388
2880	min	Winter	1.946	0.0	1812.6	1788
4320	min	Winter	1.427	0.0	1984.4	2548
5760	min	Winter	1.144	0.0	2141.9	3280
7200	min	Winter	0.964	0.0	2254.9	3968
8640	min	Winter	0.839	0.0	2350.2	4672
10080	min	Winter	0.745	0.0	2428.5	5336

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Misco
Date 25/06/2018 14:06	Designed by MA047950	Desinado
File Basin2_50%permeability	Checked by	Diali lade
XP Solutions	Source Control 2017.1.2	

Rainfall Model FSR Winter Storms Yes
Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 150
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 2.330

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.582	4	8	0.582	8	12	0.583	12	16	0.583

CH2M		Page 4
Ash House		
Falcon Road		L.
Exeter EX2 7LB		Micro
Date 25/06/2018 14:06	Designed by MA047950	Designado
File Basin2_50%permeability	Checked by	Diali lade
XP Solutions	Source Control 2017.1.2	

Storage is Online Cover Level (m) 6.000

Tank or Pond Structure

Invert Level (m) 4.500

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 1271.0 1.500 2000.0

Orifice Outflow Control

Diameter (m) 0.119 Discharge Coefficient 0.600 Invert Level (m) 4.500

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 25/06/2018 14:03	Designed by MA047950	Desinado
File Basin1_75%permeability	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
1.5			4 055	0 255	02.2	721 0	0.77
		Summer					O K
		Summer					O K
		Summer					O K
		Summer			33.8		O K
180	min	Summer	5.212	0.712	35.1	1540.8	O K
240	min	Summer	5.236	0.736	35.8	1598.0	O K
360	min	Summer	5.258	0.758	36.3	1649.9	O K
480	min	Summer	5.269	0.769	36.6	1675.8	O K
600	min	Summer	5.274	0.774	36.8	1689.1	O K
720	min	Summer	5.276	0.776	36.8	1694.0	O K
960	min	Summer	5.273	0.773	36.7	1685.6	ОК
1440	min	Summer	5.250	0.750	36.1	1630.5	ОК
2160	min	Summer	5.202	0.702	34.8	1516.5	ОК
2880	min	Summer	5.152	0.652	33.4	1400.7	ОК
4320	min	Summer	5.064	0.564	30.8	1197.7	ОК
5760	min	Summer	4.994	0.494	28.5	1038.3	ОК
7200	min	Summer	4.938	0.438	26.5	913.5	ОК
8640	min	Summer	4.892	0.392	24.8	813.7	ОК
10080	min	Summer	4.855	0.355	23.3	732.1	ОК
							ОК
600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	min	Summer Summer Summer Summer Summer Summer Summer Summer Summer	5.274 5.276 5.273 5.250 5.202 5.152 5.064 4.994 4.938 4.892 4.855 4.895 5.013	0.774 0.776 0.773 0.750 0.702 0.652 0.564 0.494 0.438 0.392 0.355 0.395	36.8 36.8 36.7 36.1 34.8 33.4 30.8 28.5 26.5 24.8 23.3 24.9	1689.1 1694.0 1685.6 1630.5 1516.5 1400.7 1197.7 1038.3 913.5 813.7 732.1 820.4 1082.2	O K O K O K O K O K O K O K O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
15	min	Summer	79.950	0.0	666.3	30
30	min	Summer	53.199	0.0	903.0	44
60	min	Summer	33.892	0.0	1230.6	72
120	min	Summer	20.940	0.0	1527.8	128
180	min	Summer	15.610	0.0	1711.7	186
240	min	Summer	12.614	0.0	1846.0	244
360	min	Summer	9.343	0.0	2052.9	330
480	min	Summer	7.540	0.0	2209.8	390
600	min	Summer	6.381	0.0	2337.2	452
720	min	Summer	5.565	0.0	2445.0	518
960	min	Summer	4.481	0.0	2621.5	656
1440	min	Summer	3.298	0.0	2878.6	930
2160	min	Summer	2.424	0.0	3257.1	1332
2880	min	Summer	1.946	0.0	3483.9	1732
4320	min	Summer	1.427	0.0	3812.2	2508
5760	min	Summer	1.144	0.0	4122.4	3232
7200	min	Summer	0.964	0.0	4339.3	3968
8640	min	Summer	0.839	0.0	4520.7	4680
0800.	min	Summer	0.745	0.0	4668.1	5440
15	min	Winter	79.950	0.0	752.5	30
30	min	Winter	53.199	0.0	1016.9	43
60	min	Winter	33.892	0.0	1382.3	72
		©198	2-2017	XP Sol	lutions	

CH2M		Page 2
Ash House		
Falcon Road		L.
Exeter EX2 7LB		Mierro
Date 25/06/2018 14:03	Designed by MA047950	Desinado
File Basin1_75%permeability	Checked by	Diamage
YD Solutions	Source Control 2017 1 2	

	Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
120	min	Winter	5.242	0.742	35.9	1613.1	ОК
180	min	Winter	5.296	0.796	37.3	1740.7	O K
240	min	Winter	5.324	0.824	38.1	1810.5	O K
360	min	Winter	5.352	0.852	38.7	1877.8	O K
480	min	Winter	5.358	0.858	38.9	1892.9	O K
600	min	Winter	5.362	0.862	39.0	1902.1	O K
720	min	Winter	5.361	0.861	39.0	1900.4	O K
960	min	Winter	5.350	0.850	38.7	1872.3	O K
1440	min	Winter	5.308	0.808	37.6	1770.2	O K
2160	min	Winter	5.232	0.732	35.6	1588.9	O K
2880	min	Winter	5.159	0.659	33.6	1417.0	O K
4320	min	Winter	5.037	0.537	29.9	1135.9	O K
5760	min	Winter	4.945	0.445	26.8	930.0	O K
7200	min	Winter	4.877	0.377	24.2	779.7	O K
8640	min	Winter	4.825	0.325	22.0	667.5	O K
10080	min	Winter	4.785	0.285	20.2	582.7	O K

Storm		R	ain	Flooded	Discha	rge	Time-Peak
	Event	(m	n/hr)	Volume	Volu	ne	(mins)
				(m³)	(m³)	
120	min Wi	nter 20	0.940	0.0	171	5.2	126
180	min Wi	nter 1	5.610	0.0	192	1.1	184
240	min Wi	nter 1	2.614	0.0	207	1.6	240
360	min Wi	nter !	9.343	0.0	230	3.3	348
480	min Wi	nter '	7.540	0.0	247	8.8	440
600	min Wi	nter (5.381	0.0	262	1.4	476
720	min Wi	nter!	5.565	0.0	274	2.0	554
960	min Wi	nter 4	4.481	0.0	293	9.4	706
1440	min Wi	nter :	3.298	0.0	322	5.7	1006
2160	min Wi	nter :	2.424	0.0	365	0.6	1432
2880	min Wi	nter :	1.946	0.0	390	5.1	1844
4320	min Wi	nter :	1.427	0.0	427	6.3	2608
5760	min Wi	nter :	1.144	0.0	461	9.1	3352
7200	min Wi	nter (0.964	0.0	486	2.7	4104
8640	min Wi	nter (0.839	0.0	506	7.6	4832
10080	min Wi	nter (0.745	0.0	523	7.0	5544

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/06/2018 14:03	Designed by MA047950	Desinado
File Basin1_75%permeability	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Rainfall Model FSR Winter Storms Yes
Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 150
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 5.025

Time	(mins)	Area									
From:	To:	(ha)									
0	4	1.256	4	8	1.256	8	12	1.256	12	16	1.257

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/06/2018 14:03	Designed by MA047950	Desinado
File Basin1_75%permeability	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Storage is Online Cover Level (m) 6.000

Tank or Pond Structure

Invert Level (m) 4.500

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 1968.0 1.500 2850.0

Orifice Outflow Control

Diameter (m) 0.145 Discharge Coefficient 0.600 Invert Level (m) 4.500

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/06/2018 14:08	Designed by MA047950	Desinado
File Basin2_75%permeability	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Storm Event		Max Level (m)	Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status	
15	min	Summer	4 875	0 375	16.6	508.0	ОК
		Summer		0.486	19.3		ОК
		Summer			21.6		ОК
120		Summer		0.696	23.6		ОК
180		Summer			24.4		ОК
		Summer		0.766	24.8	1106.0	ОК
		Summer			25.2		ОК
		Summer			25.4		ОК
		Summer			25.5		ОК
720		Summer		0.802	25.5		ОК
960		Summer			25.4		ОК
		Summer			24.9		ОК
		Summer		0.720	24.0		ОК
		Summer			23.1		ОК
		Summer		0.577	21.3		ОК
		Summer		0.503	19.7		ОК
		Summer		0.444	18.3		ОК
8640	min	Summer	4.897	0.397	17.2	538.7	ОК
10080	min	Summer	4.857	0.357	16.1	481.9	ОК
		Winter			17.7		ОК
30		Winter			20.5		ОК
60	min	Winter	5.162	0.662	22.9	939.7	ОК

	Storm		Storm Rain		Discharge	Time-Peak	
	Event		(mm/hr)	Volume	Volume	(mins)	
				(m³)	(m³)		
15	min	Summer	79.950	0.0	479.9	30	
30	min	Summer	53.199	0.0	646.3	44	
60	min	Summer	33.892	0.0	865.9	72	
120	min	Summer	20.940	0.0	1073.4	128	
180	min	Summer	15.610	0.0	1201.8	186	
240	min	Summer	12.614	0.0	1295.6	244	
360	min	Summer	9.343	0.0	1440.3	332	
480	min	Summer	7.540	0.0	1550.0	390	
600	min	Summer	6.381	0.0	1639.4	452	
720	min	Summer	5.565	0.0	1715.1	518	
960	min	Summer	4.481	0.0	1839.4	656	
1440	min	Summer	3.298	0.0	2021.8	930	
2160	min	Summer	2.424	0.0	2272.6	1336	
2880	min	Summer	1.946	0.0	2431.5	1736	
4320	min	Summer	1.427	0.0	2664.2	2508	
5760	min	Summer	1.144	0.0	2870.9	3232	
7200	min	Summer	0.964	0.0	3022.7	3968	
8640	min	Summer	0.839	0.0	3151.0	4680	
10080	min	Summer	0.745	0.0	3257.1	5440	
15	min	Winter	79.950	0.0	540.5	30	
30	\min	Winter	53.199	0.0	726.4	43	
60	min	Winter	33.892	0.0	971.7	72	
©1982-2017				XP Sol	lutions		

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/06/2018 14:08	Designed by MA047950	Desinado
File Basin2_75%permeability	Checked by	Diamage
XD Solutions	Source Control 2017 1 2	

	Storm Event			Max Depth (m)	Max Control (1/s)	Max Volume (m³)	Status
120	min	Winter	5.274	0.774	25.0	1119.2	ОК
180	min	Winter	5.328	0.828	25.9	1206.9	O K
240	min	Winter	5.357	0.857	26.4	1254.4	O K
360	min	Winter	5.384	0.884	26.8	1299.6	O K
480	min	Winter	5.389	0.889	26.9	1308.6	O K
600	min	Winter	5.392	0.892	27.0	1313.1	O K
720	min	Winter	5.390	0.890	26.9	1310.5	O K
960	min	Winter	5.377	0.877	26.7	1288.5	O K
1440	min	Winter	5.332	0.832	26.0	1213.8	O K
2160	min	Winter	5.253	0.753	24.6	1084.2	O K
2880	min	Winter	5.177	0.677	23.2	962.7	O K
4320	min	Winter	5.049	0.549	20.7	765.4	O K
5760	min	Winter	4.953	0.453	18.5	621.5	O K
7200	min	Winter	4.881	0.381	16.8	516.5	O K
8640	min	Winter	4.826	0.326	15.3	438.3	O K
10080	\min	Winter	4.784	0.284	14.0	379.0	O K

	Storm		Rain	Flooded	Discharge	Time-Peak
	Event		(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
120	min	Winter	20.940	0.0	1204.1	126
180	min	Winter	15.610	0.0	1347.8	184
240	min	Winter	12.614	0.0	1452.9	240
360	min	Winter	9.343	0.0	1614.9	348
480	min	Winter	7.540	0.0	1737.8	442
600	min	Winter	6.381	0.0	1837.8	478
720	min	Winter	5.565	0.0	1922.5	554
960	min	Winter	4.481	0.0	2061.4	708
1440	min	Winter	3.298	0.0	2264.4	1008
2160	min	Winter	2.424	0.0	2546.5	1432
2880	min	Winter	1.946	0.0	2724.6	1848
4320	min	Winter	1.427	0.0	2987.1	2632
5760	min	Winter	1.144	0.0	3216.4	3360
7200	min	Winter	0.964	0.0	3386.7	4112
8640	min	Winter	0.839	0.0	3531.2	4840
10080	min	Winter	0.745	0.0	3652.3	5544

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 25/06/2018 14:08	Designed by MA047950	Desinado
File Basin2_75%permeability	Checked by	Diamage
XP Solutions	Source Control 2017.1.2	

Rainfall Model FSR Winter Storms Yes
Return Period (years) 30 Cv (Summer) 0.750
Region England and Wales Cv (Winter) 0.840
M5-60 (mm) 20.000 Shortest Storm (mins) 150
Ratio R 0.350 Longest Storm (mins) 10080
Summer Storms Yes Climate Change % +10

Time Area Diagram

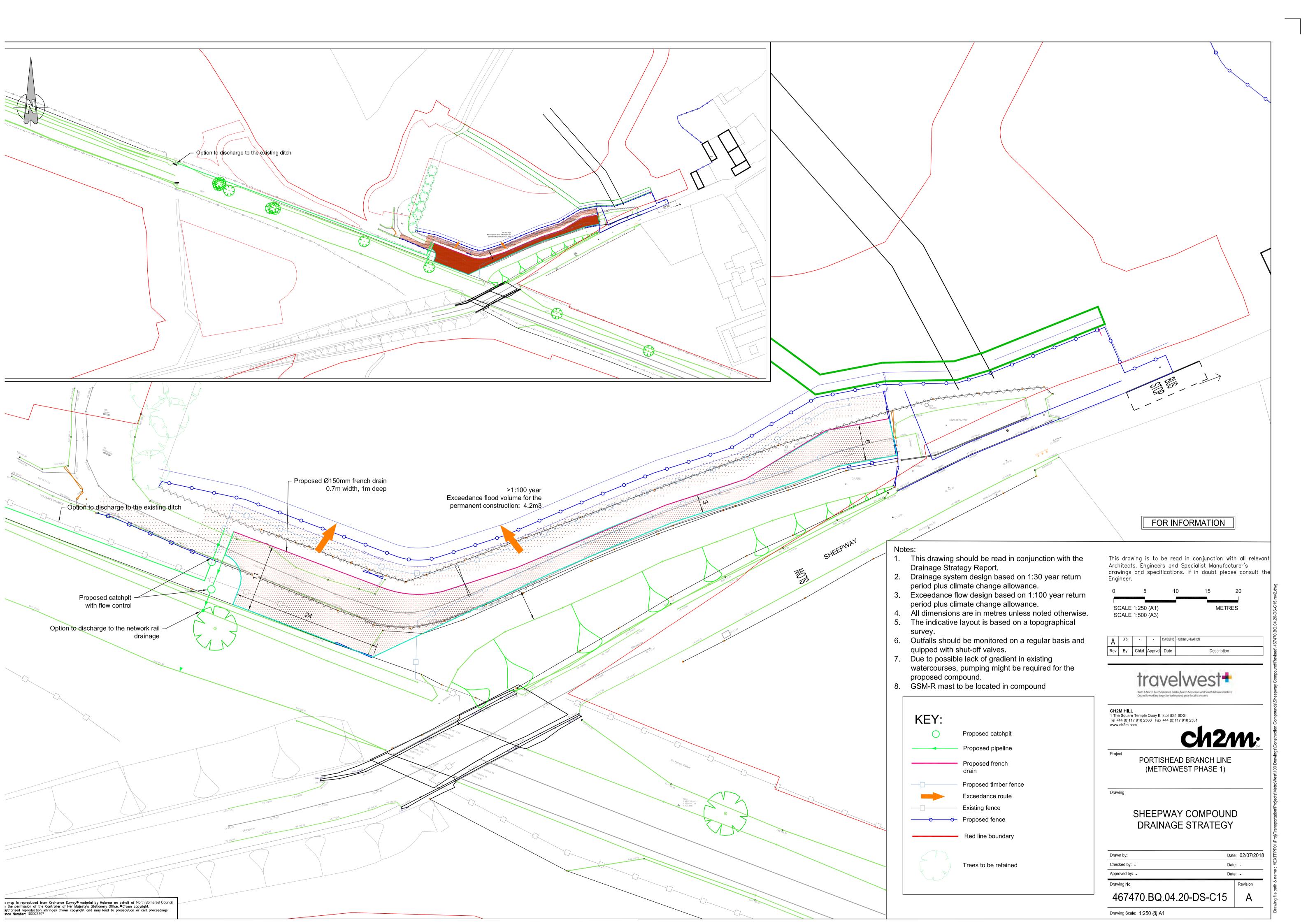
Total Area (ha) 3.495

Time	(mins)	Area									
From:	To:	(ha)									
0	4	0.874	4	8	0.874	8	12	0.874	12	16	0.873

CH2M		Page 4
Ash House		
Falcon Road		Y.
Exeter EX2 7LB		Micco
Date 25/06/2018 14:08	Designed by MA047950	Desinado
File Basin2_75%permeability	Checked by	Dialilade
XP Solutions	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 6.000


Tank or Pond Structure

Invert Level (m) 4.500

Depth (m) Area (m²) Depth (m) Area (m²)
0.000 1271.0 1.500 2000.0

Orifice Outflow Control

Diameter (m) 0.119 Discharge Coefficient 0.600 Invert Level (m) 4.500

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 02/07/2018 17:15	Designed by MA047950	Desinado
File FILTERDRAINPERMANENT.SRCX	Checked by	Diamage
XP Solutions	Source Control 2017 1 2	•

Summary of Results for 30 year Return Period (+40%)

Half Drain Time : 85 minutes.

	Storm		Max	Max	Max	Max	Max	Max	Status
	Event		Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(l/s)	(m³)	
15	min S	ummer	5.533	0.533	0.0	1.7	1.7	10.7	O K
30	min S	ummer	5.654	0.654	0.0	1.9	1.9	13.6	O K
60	min S	ummer	5.740	0.740	0.0	2.1	2.1	15.6	Flood Risk
120	min S	ummer	5.767	0.767	0.0	2.1	2.1	16.3	Flood Risk
180	min S	ummer	5.756	0.756	0.0	2.1	2.1	16.0	Flood Risk
240	min S	ummer	5.732	0.732	0.0	2.0	2.0	15.4	Flood Risk
360	min S	ummer	5.682	0.682	0.0	2.0	2.0	14.2	O K
480	min S	ummer	5.634	0.634	0.0	1.9	1.9	13.1	O K
600	min S	ummer	5.590	0.590	0.0	1.8	1.8	12.0	O K
720	min S	ummer	5.549	0.549	0.0	1.8	1.8	11.1	O K
960	min S	ummer	5.483	0.483	0.0	1.6	1.6	9.4	O K
1440	min S	ummer	5.389	0.389	0.0	1.5	1.5	6.7	O K
2160	min S	ummer	5.299	0.299	0.0	1.3	1.3	4.1	O K
2880	min S	ummer	5.241	0.241	0.0	1.1	1.1	2.6	O K
4320	min S	ummer	5.165	0.165	0.0	0.9	0.9	1.1	O K
5760	min S	ummer	5.118	0.118	0.0	0.8	0.8	0.6	O K
7200	min S	ummer	5.090	0.090	0.0	0.7	0.7	0.3	O K
8640	min S	ummer	5.072	0.072	0.0	0.6	0.6	0.2	O K
10080	min S	ummer	5.061	0.061	0.0	0.5	0.5	0.2	O K
15	min W	inter	5.591	0.591	0.0	1.8	1.8	12.1	O K
30	min W	inter	5.732	0.732	0.0	2.0	2.0	15.4	Flood Risk

	Stor Even		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	101.754	0.0	12.4	23
30	min	Summer	67.708	0.0	16.5	36
60	min	Summer	43.136	0.0	21.0	60
120	min	Summer	26.651	0.0	26.0	94
180	min	Summer	19.868	0.0	29.1	128
240	min	Summer	16.054	0.0	31.3	162
360	min	Summer	11.891	0.0	34.8	232
480	min	Summer	9.596	0.0	37.4	298
600	min	Summer	8.121	0.0	39.6	364
720	min	Summer	7.083	0.0	41.4	428
960	min	Summer	5.703	0.0	44.5	556
1440	min	Summer	4.198	0.0	49.1	800
2160	min	Summer	3.085	0.0	54.1	1156
2880	min	Summer	2.477	0.0	58.0	1504
4320	min	Summer	1.816	0.0	63.7	2208
5760	min	Summer	1.456	0.0	68.1	2936
7200	min	Summer	1.227	0.0	71.8	3672
8640	min	Summer	1.067	0.0	74.9	4320
10080	min	Summer	0.948	0.0	77.7	5120
15	min	Winter	101.754	0.0	13.9	24
30	min	Winter	67.708	0.0	18.5	36
		©198	2-2017	XP Sol	lutions	

CH2M		Page 2
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 02/07/2018 17:15	Designed by MA047950	Desinado
File FILTERDRAINPERMANENT.SRCX	Checked by	Diamage
YD Solutions	Source Control 2017 1 2	•

Summary of Results for 30 year Return Period (+40%)

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
60	min Wint	er 5.837	0.837	0.0	2.2	2.2	17.9	Flood Risk
120	min Wint	er 5.867	0.867	0.0	2.2	2.2	18.6	Flood Risk
180	min Wint	er 5.848	0.848	0.0	2.2	2.2	18.2	Flood Risk
240	min Wint	er 5.811	0.811	0.0	2.2	2.2	17.3	Flood Risk
360	min Wint	er 5.733	0.733	0.0	2.0	2.0	15.4	Flood Risk
480	min Wint	er 5.660	0.660	0.0	1.9	1.9	13.7	O K
600	min Wint	er 5.595	0.595	0.0	1.8	1.8	12.2	O K
720	min Wint	er 5.537	0.537	0.0	1.7	1.7	10.8	O K
960	min Wint	er 5.449	0.449	0.0	1.6	1.6	8.4	O K
1440	min Wint	er 5.331	0.331	0.0	1.4	1.4	5.0	O K
2160	min Wint	er 5.229	0.229	0.0	1.1	1.1	2.3	O K
2880	min Wint	er 5.166	0.166	0.0	0.9	0.9	1.2	O K
4320	min Wint	er 5.100	0.100	0.0	0.7	0.7	0.4	O K
5760	min Wint	er 5.071	0.071	0.0	0.6	0.6	0.2	O K
7200	min Wint	er 5.055	0.055	0.0	0.5	0.5	0.1	O K
8640	min Wint	er 5.047	0.047	0.0	0.4	0.4	0.1	O K
10080	min Wint	er 5.043	0.043	0.0	0.4	0.4	0.1	O K

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	43.136	0.0	23.6	62
120	min	Winter	26.651	0.0	29.1	100
180	min	Winter	19.868	0.0	32.5	138
240	min	Winter	16.054	0.0	35.1	176
360	min	Winter	11.891	0.0	39.0	248
480	min	Winter	9.596	0.0	41.9	318
600	min	Winter	8.121	0.0	44.3	386
720	min	Winter	7.083	0.0	46.4	454
960	min	Winter	5.703	0.0	49.8	582
1440	min	Winter	4.198	0.0	55.0	826
2160	min	Winter	3.085	0.0	60.6	1168
2880	min	Winter	2.477	0.0	64.9	1504
4320	min	Winter	1.816	0.0	71.4	2204
5760	min	Winter	1.456	0.0	76.3	2912
7200	min	Winter	1.227	0.0	80.4	3584
8640	min	Winter	1.067	0.0	83.9	4408
10080	min	Winter	0.948	0.0	87.0	4976

CH2M		Page 3
Ash House		
Falcon Road		L
Exeter EX2 7LB		Micco
Date 02/07/2018 17:15	Designed by MA047950	Desinado
File FILTERDRAINPERMANENT.SRCX	Checked by	Diali lade
XP Solutions	Source Control 2017.1.2	

Rainfall Details

Rainfall Model FSR Winter Storms Yes Return Period (years) 30 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 20.000 Shortest Storm (mins) 150 Ratio R 0.350 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +40

Time Area Diagram

Total Area (ha) 0.065

	(mins)								
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)	
0	4	0.021	4	8	0.022	8	12	0.022	

©1982-2017 XP Solutions

CH2M		Page 4
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micro
Date 02/07/2018 17:15	Designed by MA047950	Desinado
File FILTERDRAINPERMANENT.SRCX	Checked by	Dialilads
XP Solutions	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 6.000

Filter Drain Structure

Infiltration Coefficient Ba	, , ,			Pipe Diameter (m)	
Infiltration Coefficient Si	de (m/hr)	0.00000	Pipe	Depth above Invert (m)	0.150
Safe	ty Factor	2.0		Slope (1:X)	400.0
	Porosity	0.30		Cap Volume Depth (m)	0.000
Invert	Level (m)	5.000	Cap	Infiltration Depth (m)	0.000
Trench	Width (m)	0.7		Number of Pipes	1
Trench I	Length (m)	113.0			

Orifice Outflow Control

Diameter (m) 0.034 Discharge Coefficient 0.600 Invert Level (m) 5.000

CH2M		Page 1
Ash House		
Falcon Road		4
Exeter EX2 7LB		Micco
Date 02/07/2018 17:18	Designed by MA047950	Desinado
File FILTERDRAIN_TEMPORARY	Checked by	Dialilade
XD Solutions	Source Control 2017 1 2	

Summary of Results for 30 year Return Period (+10%)

Half Drain Time : 38 minutes.

	Storm	ı	Max	Max	Max	Max	Max	Max	Status
	Event	;	Level	Depth	${\tt Infiltration}$	Control	$\boldsymbol{\Sigma}$ Outflow	Volume	
			(m)	(m)	(l/s)	(1/s)	(l/s)	(m³)	
15	min S	Summer	5.460	0.460	0.0	1.6	1.6	4.7	O K
30	min S	Summer	5.525	0.525	0.0	1.7	1.7	5.9	O K
60	min S	Summer	5.554	0.554	0.0	1.8	1.8	6.3	O K
120	min S	Summer	5.540	0.540	0.0	1.7	1.7	6.1	O K
180	min S	Summer	5.511	0.511	0.0	1.7	1.7	5.6	O K
240	min S	Summer	5.482	0.482	0.0	1.6	1.6	5.1	O K
360	min S	Summer	5.431	0.431	0.0	1.6	1.6	4.2	O K
480	min S	Summer	5.387	0.387	0.0	1.5	1.5	3.5	O K
600	min S	Summer	5.351	0.351	0.0	1.4	1.4	2.8	O K
720	min S	Summer	5.320	0.320	0.0	1.3	1.3	2.3	ОК
960	min S	Summer	5.271	0.271	0.0	1.2	1.2	1.6	O K
1440	min S	Summer	5.199	0.199	0.0	1.0	1.0	0.7	O K
2160	min S	Summer	5.132	0.132	0.0	0.8	0.8	0.3	O K
2880	min S	Summer	5.093	0.093	0.0	0.7	0.7	0.2	O K
4320	min S	Summer	5.058	0.058	0.0	0.5	0.5	0.1	ОК
5760	min S	Summer	5.046	0.046	0.0	0.4	0.4	0.0	ОК
7200	min S	Summer	5.041	0.041	0.0	0.3	0.3	0.0	O K
8640	min S	Summer	5.037	0.037	0.0	0.3	0.3	0.0	O K
10080	min S	Summer	5.035	0.035	0.0	0.3	0.3	0.0	ОК
15	min V	Winter	5.499	0.499	0.0	1.7	1.7	5.4	ОК
30	min V	Winter	5.581	0.581	0.0	1.8	1.8	6.8	ОК

	Stor Even		Rain (mm/hr)		Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	79.950	0.0	6.3	22
30	min	Summer	53.199	0.0	8.4	32
60	min	Summer	33.892	0.0	10.7	50
120	min	Summer	20.940	0.0	13.2	84
180	min	Summer	15.610	0.0	14.8	118
240	min	Summer	12.614	0.0	15.9	152
360	min	Summer	9.343	0.0	17.7	216
480	min	Summer	7.540	0.0	19.0	278
600	min	Summer	6.381	0.0	20.1	340
720	min	Summer	5.565	0.0	21.0	398
960	min	Summer	4.481	0.0	22.6	516
1440	min	Summer	3.298	0.0	24.9	748
2160	min	Summer	2.424	0.0	27.5	1104
2880	min	Summer	1.946	0.0	29.4	1468
4320	min	Summer	1.427	0.0	32.4	2188
5760	min	Summer	1.144	0.0	34.6	2896
7200	min	Summer	0.964	0.0	36.4	3552
8640	min	Summer	0.839	0.0	38.0	4408
10080	min	Summer	0.745	0.0	39.4	5128
15	min	Winter	79.950	0.0	7.1	22
30	min	Winter	53.199	0.0	9.4	33
		©198	2-2017	XP Sol	lutions	

CH2M		Page 2
Ash House		
Falcon Road		L.
Exeter EX2 7LB		Micco
Date 02/07/2018 17:18	Designed by MA047950	Desinado
File FILTERDRAIN_TEMPORARY	Checked by	Dialilade
YD Solutions	Source Control 2017 1 2	

Summary of Results for 30 year Return Period (+10%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (1/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
60	min 1	Winter	5.620	0.620	0.0	1.9	1.9	7.3	ОК
120	min 1	Winter	5.590	0.590	0.0	1.8	1.8	6.9	O K
180	min N	Winter	5.539	0.539	0.0	1.7	1.7	6.1	O K
240	min N	Winter	5.493	0.493	0.0	1.7	1.7	5.3	O K
360	min N	Winter	5.417	0.417	0.0	1.5	1.5	4.0	O K
480	min N	Winter	5.356	0.356	0.0	1.4	1.4	2.9	O K
600	min N	Winter	5.309	0.309	0.0	1.3	1.3	2.1	O K
720	min N	Winter	5.270	0.270	0.0	1.2	1.2	1.5	O K
960	min N	Winter	5.207	0.207	0.0	1.1	1.1	0.8	O K
1440	min N	Winter	5.130	0.130	0.0	0.8	0.8	0.3	O K
2160	min N	Winter	5.079	0.079	0.0	0.6	0.6	0.1	O K
2880	min N	Winter	5.057	0.057	0.0	0.5	0.5	0.1	O K
4320	min N	Winter	5.043	0.043	0.0	0.4	0.4	0.0	O K
5760	min N	Winter	5.037	0.037	0.0	0.3	0.3	0.0	O K
7200	min N	Winter	5.033	0.033	0.0	0.2	0.2	0.0	O K
8640	min N	Winter	5.031	0.031	0.0	0.2	0.2	0.0	O K
10080	min N	Winter	5.029	0.029	0.0	0.2	0.2	0.0	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
60	min	Winter	33.892	0.0	12.0	54
120	min	Winter	20.940	0.0	14.8	90
180	min	Winter	15.610	0.0	16.5	128
240	min	Winter	12.614	0.0	17.8	162
360	min	Winter	9.343	0.0	19.8	228
480	min	Winter	7.540	0.0	21.3	290
600	min	Winter	6.381	0.0	22.5	350
720	min	Winter	5.565	0.0	23.6	406
960	min	Winter	4.481	0.0	25.3	518
1440	min	Winter	3.298	0.0	27.9	742
2160	min	Winter	2.424	0.0	30.8	1096
2880	min	Winter	1.946	0.0	33.0	1468
4320	min	Winter	1.427	0.0	36.2	2196
5760	min	Winter	1.144	0.0	38.7	2856
7200	min	Winter	0.964	0.0	40.8	3600
8640	min	Winter	0.839	0.0	42.6	4096
10080	min	Winter	0.745	0.0	44.2	5152

CH2M		Page 3
Ash House		
Falcon Road		4
Exeter EX2 7LB		Misco
Date 02/07/2018 17:18	Designed by MA047950	Desinado
File FILTERDRAIN_TEMPORARY	Checked by	nian lads
XP Solutions	Source Control 2017.1.2	

Rainfall Details

Rainfall Model FSR Winter Storms Yes Return Period (years) 30 Cv (Summer) 0.750 Region England and Wales Cv (Winter) 0.840 M5-60 (mm) 20.000 Shortest Storm (mins) 150 Ratio R 0.350 Longest Storm (mins) 10080 Summer Storms Yes Climate Change % +10

Time Area Diagram

Total Area (ha) 0.042

							(mins)		
From:	To:	(ha)	From:	To:	(ha)	From:	To:	(ha)	
0	4	0.014	4	8	0.014	8	12	0.014	

©1982-2017 XP Solutions

CH2M		Page 4
Ash House		
Falcon Road		L.
Exeter EX2 7LB		Micco
Date 02/07/2018 17:18	Designed by MA047950	Desinado
File FILTERDRAIN_TEMPORARY	Checked by	Diali lage
XP Solutions	Source Control 2017.1.2	

Model Details

Storage is Online Cover Level (m) 6.000

Filter Drain Structure

Infiltration Coefficient Base (m/hr	0.0000	Pipe Diameter (m) 0.150
Infiltration Coefficient Side (m/hr	0.0000	Pipe Depth above Invert (m) 0.150
Safety Facto	or 2.0	Slope (1:X) 400.0
Porosit	y 0.30	Cap Volume Depth (m) 0.000
Invert Level (n	n) 5.000	Cap Infiltration Depth (m) 0.000
Trench Width (m	n) 0.3	Number of Pipes 1
Trench Length (n	n) 139.0	

Orifice Outflow Control

Diameter (m) 0.034 Discharge Coefficient 0.600 Invert Level (m) 5.000

APPENDIX F

Water Quality Risk Management

Appendix F Water Quality Risk Management

(\cap	n	Ť.	\Box	n	ГC
· ·						l.)

1. Water quality management approaches2	
2. Portishead and Pill Stations3	,
Step 1: Allocate suitable pollution hazard indices for the proposed land use4	ļ
Step 2: Select SuDS with a total pollution mitigation index that equals or exceeds the pollution hazard index	,
Step 3: Where the discharge is to protected surface waters or groundwater, consider the need for a more precautionary approach	;
3. Compounds6	,
4. Haul roads	,
List of Tables	
Table 1: Pollution hazard level and risk assessment method	,
List of figures	
Figure 1: Minimum water quality management requirements; reproduced from p63 of the SuDS Manual 2015 (C753)	
Figure 3: Pollution hazard indices; reproduced from p568 of the SuDS Manual 2015 (C753)	Ļ

1. Water quality management approaches

TABLI 4.3

Table 4.3 in Chapter 4 of the SuDS Manual 2015 (C753) outlines the minimum water quality management approaches/ considerations. This has been reproduced in Figure 1 below:

Minimum water quality ma and groundwater	nagement r	equirements for discharg	ges to receiving surface waters
Land use	Pollution hazard level	Requirements for discharge to surface waters, including coasts and estuaries ²	Requirements for discharge to groundwater
Residential roofs	Very low	Removal of gross solids and	sediments only
Individual property driveways, roofs (excluding residential), residential car parks, low traffic roads (eg cul de sacs, home zones, general access roads), non-residential car parking with infrequent change (eg schools, offices)	Low	Simple index approach ^a Note: extra measures may be required for discharges to protected res	
Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways	Medium	Simple index approach ^a Note: extra measures may be required for discharges to protected resources ^a	Simple index approach? Note: extra measures may be required for discharges to protected resources? In England and Wales, Risk Screening; must be undertaken first to determine whether consultation with the environmental regulator is required. In Northern Ireland, the need for risk screening should be agreed with the environmental regulator.
Trunk roads and motorways	High	Follow the guidance and risk a	assessment process set out in HA (2009)
Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured, industrial sites	High	Discharges may require an environmental licence or permit ^a . Obtain pre-permitting advice from the environmental regulato assessment is likely to be required ^a .	

Notes

The minimum water quality management requirements for discharges to receiving surface waters and groundwater are presented here. (For Northern Ireland, this guidance should be considered as Interim until such time as Northern Ireland publishes its own legislation/policy/guidance.)

- 1 These are not required in Scotland and Northern Ireland. For England and Wales, see Step 3 of the simple Index approach (Section 26.7.1).
 - Protected surface water resources will include those designated for drinking water abstraction or for other environmental protection reasons. Protected groundwater resources are represented by SPZ1s in England and Wales.
- 2 In Scotland, the Water Environment (Controlled Activities) (Scotland) Regulations (CAR) 2011 General Binding Rules, Rule 10 (d) (iv) effectively provides an exemption from requiring SuDS for coastal discharges. However, control of any contaminants likely to be present in surface water runoff is still required, but can be delivered using alternative methods such as proprietary treatment products. As the term 'SuDS' in this manual includes proprietary treatment products, this exemption is not valid in this context.
- 3 The application of the simple index approach should follow the approach outlined in Section 26.7.1 (or equivalent approved).
- 4 Risk screening is an assessment to identify high risk scenarios where the Environment Agency or Natural Resources Wales (NRW) would wish to be consulted regarding inflitration of water from surface runoff in order to agree the proposed design approach. The risk screening method is provided in Section 26.7.2.
- 5 The risk assessment should determine the appropriate design approach to mitigate risk to acceptable levels following the guidance outlined in Section 26.7.3. This assessment should be approved by the environmental regulator.

Figure 1: Minimum water quality management requirements; reproduced from p63 of the SuDS Manual 2015 (C753).

Due to the different land use of the proposed sites, each development has been assessed independently as shown in Table 1 below.

Development	Description	Pollution hazard level – SuDS Manual	Assessment method
Carparks Portishead Station	The Portishead carparks are considered as commercial areas. Additionally, the traffic estimation for the carparks and drop off area showed that 225 users will arrive by car seeking to park at the station and 106 users will use the drop off areas. These figures, together with the users using taxis or public transport, reveal that more than 300 traffic movements/day are expected¹. Therefore, they are classed as medium hazard level.	Medium	Simple Index Method
Roads and roundabout Portishead Station	The traffic forecast showed that up to 1905 turning movements are estimated for the peak hours at the realigned roundabout (Phoenix Way/ Quays Avenue/Harbour Road). Consequently, these roads do not correspond to low traffic roads and are classified as medium hazard level.	Medium	Simple Index Method
Carparks Pill station	The traffic forecast for the carpark showed that only 60 traffic movements per day are expected which less than the 300 traffic movements limit indicated in the SuDS Manual. However, the carpark is to serve the new Pill Station (which is considered as 'commercial yard and delivery areas') and is the access to the attached Railway Network Depot next to the carpark. Hence, the carpark is classed as medium hazard level.	Medium	Simple Index Method
Haul roads	The haul roads will be used by heavy vehicles, therefore high pollution hazard level is anticipated.	High	Consultation to environmental regulator
Compounds	The compounds will be used by heavy vehicles, therefore high pollution hazard level is anticipated.	High	Consultation to environmental regulator

Table 1: Pollution hazard level and risk assessment method

2. Portishead and Pill Stations

As the development within these sites will be discharged to surface water, and is classed as medium (non-residential car parking with frequent change (eg hospitals, retail), the Simple Index Approach has been used to identify the pollution hazard and mitigation measures appropriate for the site based on land use.

The steps followed are as outlined in Box 26.2 of Chapter 26 of the SuDS Manual 2015 (C753), as reproduced in Figure 2 below:

¹ Based on 467470.BQ.04.20_MetroWest Phase 1 - Harbour Rd-Quays Ave Options Modelling_April 2015.docx and 467470.BQ.04.20_MetroWest Phase 1 - Harbour Rd-Quays Ave Modelling_June 2015 Update.docx

BOX Steps of the simple index approach 26.2

Step 1 - Allocate suitable pollution hazard indices for the proposed land use

Step 2 – Select SuDS with a total pollution mitigation index that equals or exceeds the pollution hazard index

Step 3 – Where the discharge is to protected¹ surface waters or groundwater, consider the need for a more precautionary approach

Note:

26

1 Designated as those protected for the supply of drinking water (Table 4.3).

Figure 2: Steps of the simple index approach; reproduced from p567 of the SuDS Manual 2015 (C753).

Step 1: Allocate suitable pollution hazard indices for the proposed land use

The pollution hazard indices are presented in Table 26.2 of C753. This has been reproduced in Figure 3 below:

Land use	Pollution hazard level	Total suspended solids (TSS)	Metals	Hydro- carbons
Residential roofs	Very low	0.2	0.2	0.05
Other roofs (typically commercial/ industrial roofs)	Low	0.3	0.2 (up to 0.8 where there is potential for metals to leach from the roof)	0.05
Individual property driveways, residential car parks, low traffic roads (eg cul de sacs, homezones and general access roads) and non- residential car parking with infrequent change (eg schools, offices) ie < 300 traffic movements/day	Low	0.5	0.4	0.4
Commercial yard and delivery areas, non-residential car parking with frequent change (eg hospitals, retail), all roads except low traffic roads and trunk roads/motorways ¹	Medium	0.7	0.6	0.7
Sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels (other than domestic fuel oil) are to be delivered, handled, stored, used or manufactured; industrial sites; trunk roads and motorways¹	High	0.82	0.8²	0.9²

Notes

- 1 Motorways and trunk roads should follow the guidance and risk assessment process set out in Highways Agency (2009).
- These should only be used if considered appropriate as part of a detailed risk assessment required for all these land use types (Table 4.3). When dealing with high hazard sites, the environmental regulator should first be consulted for pre-permitting advice. This will help determine the most appropriate approach to the development of a design solution.

Figure 3: Pollution hazard indices; reproduced from p568 of the SuDS Manual 2015 (C753).

Based on this, the development proposed within the stations has been assessed and Table 2 shows the associated pollution hazard Level/ Indices for each land use type.

Development site	Catchment	Pollution hazard level	Total suspended solids	Metals	Hydro- carbons
	Cat A.1	Medium	0.7	0.6	0.7

Development site	Catchment	Pollution hazard level	Total suspended solids	Metals	Hydro- carbons
	Cat A.2	Medium	0.7	0.6	0.7
Portishead Station	Cat A.3	Medium	0.7	0.6	0.7
	Cat A.4	Medium	0.7	0.6	0.7
Pill Station	Carpark	Medium	0.7	0.6	0.7

Table 2. Pollution hazard level/indices for proposed development

Step 2: Select SuDS with a total pollution mitigation index that equals or exceeds the pollution hazard index

The total SuDS mitigation indices should be equal to or exceed the pollution hazard indices. Where multiple components are proposed to provide mitigation, it is suggested that a factor of 0.5 is applied to secondary or tertiary components to account for a reduction in performance due to already reduced inflow concentrations.

As the runoff will be discharged to surface water, Table 26.3 in Chapter 26 of the SuDS manual is recommended to determine the mitigation indices/ SuDS components that will provide sufficient water quality improvement. Table 26.3 has been reproduced in Figure 4 below:

		Mitigation indices ¹	
Type of SuDS component	TSS	Metals	Hydrocarbons
Filter strip	0.4	0.4	0.5
Filter drain	0.42	0.4	0.4
Swale	0.5	0.6	0.6
Bioretention system	0.8	0.8	0.8
Permeable pavement	0.7	0.6	0.7
Detention basin	0.5	0.5	0.6
Pond ⁴	0.73	0.7	0.5
Wetland	0.83	0.8	0.8
Proprietary treatment systems ^{5,6}	acceptable levels for frequ	that they can address each uent events up to approxima ncentrations relevant to the	ately the 1 in 1 year return

Notes

- 1 SuDS components only deliver these indices if they follow design guidance with respect to hydraulics and treatment set out in the relevant technical component chapters.
- 2 Filter drains can remove coarse sediments, but their use for this purpose will have significant implications with respect to maintenance requirements, and this should be taken into account in the design and Maintenance Plan.
- Ponds and wetlands can remove coarse sediments, but their use for this purpose will have significant implications with respect to the maintenance requirements and amenity value of the system. Sediment should normally be removed upstream, unless they are specifically designed to retain sediment in a separate part of the component, where it cannot easily migrate to the main body of water.
- 4 Where a wetland is not specifically designed to provide significantly enhanced treatment, it should be considered as having the same mitigation indices as a pond.
- 5 See Chapter 14 for approaches to demonstrate product performance. A British Water/Environment Agency assessment code of practice is currently under development that will allow manufacturers to complete an agreed test protocol for systems intended to treat contaminated surface water runoff. Full details can be found at: http://tinyurl.com/qf7yuj7
- 6 SEPA only considers proprietary treatment systems as appropriate in exceptional circumstances where other types of SuDS component are not practicable. Proprietary treatment systems may also be considered appropriate for existing sites that are causing pollution where there is a requirement to retrofit treatment. SEPA (2014) also provides a flowchart with a summary of checks on suitability of a proprietary system.

Figure 4: Mitigation indices; reproduced from p570 of the SuDS Manual 2015 (C753).

Table 3 provides a summary of the proposed drainage components that will be used to provide water quality mitigation.

As can be seen from a review of Table 2 and Table 3 mitigation measure/ proposed drainage features are sufficient to offset the pollution hazard level for each land use.

Development site	Catchment	Proposed drainage component	Total suspended solids	Metals	Hydro- carbons
Portishead		Permeable pavement	0.7	0.6	0.7
Station	Cat A.1	Swale	0.25 = (0.5x0.5)	0.3 = (0.6x0.5)	0.3 = (0.6x0.5)
		Total	0.95	0.9	1
Portishead	Cat A.2	Bioretention system	0.8	0.8	0.8
Station	-	Total	0.8	0.8	0.8
Portishead	Cat A.3	Swale	0.5	0.6	0.6
Station		Filter drain	0.2 = (0.5x0.4)	0.2 = (0.5x0.4)	0.2 = (0.5x0.4)
		Total	0.7	0.8	0.8
Portishead Station	Cat A.4	Permeable pavement	0.7	0.6	0.7
	_	Total	0.7	0.6	0.7
Pill Station	Carpark	Permeable pavement	0.7	0.6	0.7
	•	Total	0.7	0.6	0.7

Table 3. Mitigation indices for chosen components for the proposed developments.

Step 3: Where the discharge is to protected surface waters or groundwater, consider the need for a more precautionary approach

As the discharge of the sites is at locations very close to the coast, no water abstraction for drinking water purpose is expected, therefore a more precautionary approach is not required (see note 1 of Table 4.3, which is reproduced in Figure 1 for information).

3. Compounds

The design of the compounds is still on progress and the only available information at the moment was abstracted from the document 'MetroWest 1 Construction Strategy' and is shown on Table 4. Details of construction compounds below.

Compound	Description - facilities
C-15 Sheepway compound	Additional localised storage and welfare. There will be a small amount of parking, materials storage and toilets.
C-14 The Portbury Hundred Compound	Large amount of parking for staff vehicles, materials storage, toilets, changing facilities, canteen and offices. Space for storage of sleepers, drainage, troughing, energy recovery units for vegetation removal, spoil, ballast and track formation. Dumpers, excavators, dozers, lorries will be using the compound.
Turning area for construction vehicles east to C-14	Approximate 500m ² of turning area available for construction vehicles

Compound	Description - facilities
C-13 Lodway Farm	A medium level of parking will be provided for staff, materials storage, toilets, changing facilities, canteen and offices. Personal vehicles, small vans, minibuses and HGV access will be using the compound.
C-9 Ham Green Compound	Low loaders to drop off RRVs will be using the compound. Mitigation measures may be necessary to ensure run off and sediment does not enter the lake.
C-4 Clanage Road	Medium sized parking area, materials storage, toilets, changing facilities; canteen and site offices.

Table 4. Details of construction compounds

As the development within these sites will be discharged to surface water, and is classed as high risk (sites with heavy pollution (e.g. haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites), sites where chemicals and fuels are to be delivered, handled, stored, used or manufactured, industrial sites), the pollution hazard has been identified and consultation with North Somerset Levels Internal Drainage Board has been undertaken to agree the appropriate mitigation measures. Those measure will need to be accepted by the Environmental Regulator prior to detail design. See appendix A for further details.

The water pollution hazards identified in relation to the compounds use and how they are mitigated are described in Table 5. Nevertheless, the potential hazards should be examined when the detail design of the compounds is completed.

Pollution hazard	Mitigation measure
	Filter drains are proposed as the conveyance system for most part of the compounds. The flows from the filter drains will be then directed to ditches located around the perimeter of the compounds that will also allow sedimentation. Additionally, silt trap chambers are promoted to capture the silt.
Sedimentation	Detention basins are proposed as the most downstream drainage feature before the discharge (at the greenfield runoff peak) to the watercourses to provide water storage but also a secondary water treatment (sedimentation and pollution removal).
	Storage materials areas should be under cover to prevent wash down.
Fuel and oils	For the areas of fuel and oil handling, oil separators will be provided to remove hydrocarbons from high-risk areas of runoff. In addition, penstock chambers will be proposed downstream of the oil separators and at other locations of the network to enable shut down of the surface water drainage network in case of a spill occurs. Besides, the legal requirement when the capacity of the storage tank is more than 200 litres and there is risk of an oil spillage reaching a public water source, the tank needs to be bunded.
Water from wash down areas	Wash down areas should be isolated and appropriate water treatment to be provided as required.

Table 5. Mitigation measure for compounds

4. Haul roads

The proposed haul roads between Portishead and Portbury Hundred construction compound sites will discharge to existing watercourses, and are classed as high risk (sites with heavy pollution (eg haulage yards, lorry parks, highly frequented lorry approaches to industrial estates, waste sites). the pollution hazard has been identified and consultation with North Somerset Levels Internal Drainage Board has been undertaken to agree the appropriate mitigation measures. Those measure will need to be accepted by the Environmental Regulator prior to detail design. See appendix A for further details.

The main pollution hazard for the haul roads is the silt derived by the construction vehicles movements. Runoff will be collected by ditches with check dams to capture sediment and prevent any contaminated water being discharged to the watercourses. The accumulated silt will need to be removed periodical basis. As runoff peaks are going to be attenuated at greenfield rates, the removal of contaminants through settling, adsorption will be enhanced.

APPENDIX G

Concept Drainage Design Report Rev 01 from January 2017

Concept Drainage Design for Portishead and Pill Stations

Prepared for

Travelwest

January 2017

CH2M HILL 1 The Square Temple Quay Bristol BL1 6DG

Contents

Section		Page
1 Introduction	1-1	
2 Design Con	straints and Parameters	2-1
3 Portishead	Station	3-1
3.1	Cat A.1	
3.2	Cat A.2	
3.3	Cat A.3	3-2
4 Pill Station		
4.1	Cat B.1	4-1
5 Recommen	ndations	
5.1	Portishead	
5.2	Pill Station	5-1

Appendices

- A EA advice on Portbury ditch , NSC drainage advice, analysis of Portbury ditch water levels
- B Portishead Station Drainage Catchment Areas 467470.BQ.04.20-SK105 Portishead Station Drainage Strategy 467470.BQ.04.20-SK106 Portishead Station Existing Drainage 467470.BQ.04.20-SK107
- C Pill Station Drainage Strategy 467470.BQ.04.20-200-SK10

1 Introduction

This report covers the concept drainage design for the proposed Portishead and Pill station car parks and associated new highways for the Metrowest scheme.

2 Design Constraints and Parameters

The drainage design life for the car parks and new road drainage systems shall be 60 years.

The drainage system for all the new roads and parking areas shall be designed to North Somerset Council (NSC) requirements for a 1 in 30 year rainfall event with an allowance for climate change (refer to Appendix A). Exceedance routes up to the 1 in 100 year rainfall event, with an allowance for climate change will be required to demonstrate that no flooding to property occurs. Tide locking will need to be taken into account in the drainage design.

The NPPF Planning Practice Guidance states that "Generally the aim should be to discharge surface runoff as high up the following hierarchy of drainage options as reasonably practicable:

- 1. into the ground (infiltration);
- 2. to a surface water body;
- 3. to a surface water sewer, or other drainage system;
- 4. to a combined sewer.

Following this hierarchy, NSC would like to see the drainage from both the car parks and the new sections of road discharging either via infiltration or to the existing / new ditch network, rather than going into the highway drainage system.

If this is not possible, the capacity of the existing highway system will need to be checked and potentially upgraded to ensure no flooding for up to the 1 in 30 year event with an allowance for climate change.

Car park drainage systems should include pollution control and NSC would like to see this achieved through the use of bio-retention where practicable.

The normal requirement would be to restrict flows to greenfield rates on previously undeveloped land, or as close to greenfield as practicable, but not exceeding existing rates on previously develop land.

As the Portishead site is so close to the coast, NSC do not require restriction to the discharge rate, however a capacity check will be required to demonstrate that the drainage system maintains a 1 in 30 year with climate change capacity under tide locked conditions.

For Pill Station car park, the standard principles will apply, which is assumed to be greenfield rates or a minimum 5 l/s.

3 Portishead Station

The proposed drainage for the carparks and highways work have been analysed on a catchment basis. Four catchment areas have been identified as shown on drawing SK105 Drainage Catchment Areas (refer to Appendix B)

3.1 Cat A.1

This is catchment the area to the west of the proposed rail station and includes the proposed main car park and footpaths. This area is an existing field.

Without GI results it is assumed that the soil is heavy clay, WRAP class 4 potentially 3 and with a shallow groundwater level (ie 1 to 2m below ground level). As such it is assumed that infiltration is not an option and therefore impermeable surfacing shall be proposed for the car park and footways. Total impermeable area is 5,825m².

The drainage proposal for this catchment area is for the car park to discharge via gullies to a swale (refer to Appendix B drawing SK106 –Drainage Strategy). The footpaths shall have filter drains along the edge which shall also discharge to the swale.

The swale shall be located along the southern edge of the site and have a French drain with check dams. Rye grass shall line the swale to provide pollution control.

The proposed outfall for the swale shall be the Portbury ditch, which is an open watercourse, under the EA jurisdiction. The EA has verbally advised that the discharge rate into the ditch shall be set by NSC flood authority (refer to Appendix A).

The analysis of water levels, in vicinity of the proposed Portbury Ditch outfall, for 25 year and 50 year climate change (assumed to be 20%) scenarios are 4.85m and 7.05m respectively (refer to Appendix A). For a 1 in 30 year event this has been interpolated as 5.29m. It is therefore recommended that a microdrainage design is undertaken to confirm the required size of swale for this tide lock level of 5.29m.

The outfall structure to the Portbury Ditch will require a flood defence permit from the EA. This shall be subject to more detailed design but a precast concrete headwall is considered by the EA to be an appropriate solution.

3.2 Cat A.2

This catchment area lies to the north of the proposed rail station and includes new roads and footways. The new roads shall tie into Harbour Road to the east and Phoenix Road to the west. This shall be an impermeable area of 3966m².

There is an existing surface water drainage network in this catchment area, which is identified on Wessex Water services plan as a highway drain, suggesting it is owned by NSC. The existing highway runoff discharges to "The Cut" via a 225mm pipe and the existing impermeable area that is drained by this system is approximately 5000m² (refer to Appendix B drawing SK107 – Existing Drainage).

Given the proposed impermeable area is less than the existing, it is proposed that this catchment area discharges into the existing highway system. A swale is also proposed along the west side of the new roundabout and entry /exit arm, which shall discharge in to the existing highway drainage (refer to Appendix B drawing SK106 –Drainage Strategy).

Bio-retention areas are proposed in vicinity of the new road including the centre island of the new roundabout.

3.3 Cat A.3

This catchment area is to the south of the proposed rail station and includes a new road and footways that tie-into Quays Avenue. The impermeable area for this catchment is 2982m².

There are no available records of an existing surface water network or outfall on Quays Avenue, other than gullies so it is assumed that a highway pipe network is present. The existing impermeable area is 2235m².(Refer to Appendix B drawing SK107 – Existing Drainage)

For the new section of Quays road, drainage shall be provided with positive drainage network with a filter drain along the toe of the embankment (refer to Appendix B drawing SK106 –Drainage Strategy). This system shall outfall into the existing drainage network on Quays road.

A bio-retention area is proposed in vicinity of the green space to the east of the re-aligned Quays Road.

The proposed footway that shall run along the existing Quays Avenue, shall drain into the proposed green space.

3.4 Cat A.4

This catchment area is the car parking and hardstanding by the Portishead station which covers an area of $3690m^2$. It is proposed that permeable pavement is used, with a gravel tank system and membrane under the car park. This shall discharge to an existing manhole and outfall to The Cut (refer to Appendix B drawing SK106 –Drainage Strategy)

4 Pill Station

4.1 Cat B.1

The catchment area for Pill Station is the car park area B.1 (Refer to Appendix C drawing SK10 Pill Station Drainage Strategy). This area is currently an informal private car park with a mix of grass, asphalt and gravel surfacing.

Existing drainage records of the area have not been received but a streetview visual suggests no existing gullies on Monmouth Road. This is supported by anecdotal evidence of localized flooding on the Monmouth Road. Gullies are found further down Avon Road, where Monmouth road changes name.

The proposed drainage strategy for this catchment area of 1488 m² is for a permeable pavement with a gravel tank system and membrane under the car park . This shall discharge into a proposed new highway drainage system to be provided on Monmouth Road and shall connect into an existing system on Avon Road.

5 Recommendations

5.1 Portishead

- 1 Review drainage options once GI information is available
- 2 Carry out further design work to size the swales to meet NSC requirements
- 3 Assess the capacity of the existing highway network of catchment area A.2.
- 4 Assess capacity of the outfall system to "The Cut"
- 5 Carry out a survey of existing highway drainage in catchment area A.3 and assess the capacity of the network

5.2 Pill Station

1 Carrry out a survey of existing highway drainage on Monmouth and Avon Road and assess the capacity of the network.

Appendix A

Lillie, Penny/UKS

From:
Sent:
Control
Bellamy, Dave/EXT
O6 December 2016 14:56
Lillie, Penny/UKS

Subject: RE: Proposed Portishead MetroWest Station

Hi Penny,

I spoke with Dave Pring earlier regarding the Portishead Metrowest station drainage discharge to the main river. Discharge rate will be set by the Lead Local Flood Authority, in this case North Somerset Council. As I said to you on phone last week, this will almost certainly be restricted to the greenfield run-off rate.

The only consultation required with the Environment Agency is in obtaining a flood defence permit for the outfall structure. I asked when would be a good time to talk with them about this and he advised that once we have a design for the structure we can run it past them. I mentioned that it would likely be a precast concrete headwall, and his opinion was that there would be no issue with obtaining a permit on this basis.

The number to phone once we have a design is 03708 506506

Hope this helps. Kind regards

Dave

From: Lillie, Penny/UKS

Sent: 02 December 2016 12:23

To: Bellamy, Dave/EXT <Dave.Bellamy@ch2m.com> **Subject:** RE: Proposed Portishead MetroWest Station

ok many thanks kind regards

Penny Lillie

Project Engineer

Direct +44 (0)1793 816671 Mobile +44 (0)7547 190959

CH2M

Burderop Park, Swindon, UK SN4 0QD www.ch2m.com

From: Bellamy, Dave/EXT Sent: 02 December 2016 12:21

To: Lillie, Penny/UKS < Penny.Lillie@ch2m.com **Subject:** RE: Proposed Portishead MetroWest Station

Hi Penny,

No nothing yet but I will chase them up again. Cheers

Dave

From: Lillie, Penny/UKS

Sent: 02 December 2016 12:19

To: Bellamy, Dave/EXT < <u>Dave.Bellamy@ch2m.com</u>> **Subject:** RE: Proposed Portishead MetroWest Station

Hi Dave

any news? if not I am happy to follow up.

Lillie, Penny/UKS

From: Jennifer Devereux < Jennifer.Devereux@n-somerset.gov.uk>

Sent: 16 December 2016 08:49
To: Lillie, Penny/UKS
Cc: Linfoot, Andrew/BRS

Subject: FW: highway drainage designs [EXTERNAL]

Attachments: Pill Station Existing Highway Gullies.pdf; Portishead Station Existing Highway Gullies.pdf

Follow Up Flag: Follow up Flag Status: Flagged

Hi Penny

Please find below the drainage detail.

Kind Regards Jenny

From: Lucy Nicholson

Sent: Thursday, December 15, 2016 5:08 PM

To: Jennifer Devereux < Jennifer. Devereux@n-somerset.gov.uk>; Richard Matthews < Richard. Matthews@n-

somerset.gov.uk>

Subject: RE: highway drainage designs

Hi Jenny / Richard,

Sorry it's taken me so long to get back to you on this – I 've been completely overwhelmed by Town centre and other planning issues!

Unfortunately we do not hold very much information on the highway drainage networks, all we have is a GIS layer showing the location of gullies (attached for each of the locations in your email) but there is no information on pipe connections or dimensions etc.

The drainage system for all the new roads and parking areas should be designed to manage a 1 in 30 year rainfall event with an allowance for climate change. Exceedance routes up to the 1 in 100 year rainfall event, with an allowance for climate change will be required to demonstrate that no flooding to property occurs. Tide locking will need to be taken into account in the drainage design.

The NPPF Planning Practice Guidance states that "Generally the aim should be to discharge surface runoff as high up the following hierarchy of drainage options as reasonably practicable:

- 1. into the ground (infiltration);
- 2. to a surface water body;
- 3. to a surface water sewer, or other drainage system;
- 4. to a combined sewer.

Following this hierarchy we would like to see the drainage from both the car parks and the new sections of road discharging either via infiltration or to the existing / new ditch network, rather than going into the highway drainage system.

If this is not possible, the capacity of the existing highway system will need to be checked and potentially upgraded to ensure no flooding for up to the 1 in 30 year event with and allowance for climate change.

Car park drainage systems should include pollution control and we would like to see this achieved through the use of bio-retention where practicable.

The normal requirement would be to restrict flows to greenfield rates on previously undeveloped land, or as close to greenfield as practicable, but net exceeding existing rates on previously develop land.

As the Portishead site is so close to the coast, we do not need to restrict the discharge rate, however a capacity check will be required to demonstrate that the drainage system maintains a 1 in 30 year with climate change capacity under tide locked conditions.

For the other locations the standard principles will apply.

Hope this makes sense, let me know if you have any queries.

Kind regards

Lucy Nicholson
Senior Flood Risk Officer
Development & Environment
North Somerset Council

Tel: 01275 888204

E-Mail: <u>Lucy.Nicholson@n-somerset.gov.uk</u>

Post: Town Hall, Walliscote Grove Road, Weston-super-Mare, BS23 1UJ

Web: http://secure-

web.cisco.com/1e6JeQw3OUX_ABq3L30U1ZGoL_NPVtkuJ8nUgNGB0gJbQFVE7Z9YLa_CDPAl_FHeEL9kf729paA286ZvwxtoWnOuRBzyQIYiW0rKStZ3LAQ3QR6ZK0RAAJi2jE6c0ekPkWuTayim-zKShX9jlRWyUBrq3NiWZmZJekOmY0tGHHj-QuCUVwne8b-

<u>AjepZTRRMQCcpdGIVyENBUcyi8WN2Nqldqh16FJ4SVF8KPXPF2ttADliQieLMngZZsG1GqzEfVxYdHZogdAEjzcjolKHjPgER8g8_BME_607DVG60OBYX3vGDuoEAEoLThxdObNcEMJMqltV0q-</u>K_IOUKoSa0R2Mwuw8I-

<u>D b2vWSopjgRf2qQDAAK40WqeZzJ1aEsnu0CnfXPtxuiNjKH0UORY3wvY6ofgc6T_0LJ2wrZ0DKbJfqb6K14QzuXXb5K9ig_mSh1yq_2H9krkx9qCBO9ptJPZ8Yy5x7l0A20igHJjX-0RqL0/http%3A%2F%2Fwww.n-somerset.gov.uk</u>

From: Jennifer Devereux

Sent: Thursday, December 08, 2016 12:16 PM

To: Lucy Nicholson < Lucy. Nicholson@n-somerset.gov.uk >

Subject: FW: highway drainage designs

Hi Lucy

They would like any details you have on the existing highway drainage at Pill and Ashton as well. They haven't asked, but I'll send you the draft drawings showing where we have permanent compounds too.

Thanks Jenny

From: Penny.Lillie@ch2m.com [mailto:Penny.Lillie@ch2m.com]

Sent: Thursday, December 08, 2016 11:59 AM

To: Jennifer Devereux < Jennifer. Devereux@n-somerset.gov.uk >

Cc: Andrew.Linfoot@ch2m.com
Subject: highway drainage designs

Hi Jenny

Yes we will need existing highway drainage for Pill and Ashton as well please. kind regards

Penny Lillie

Project Engineer

Direct +44 (0)1793 816671 Mobile +44 (0)7547 190959

CH2M

Burderop Park, Swindon, UK SN4 0QD www.ch2m.com

From: Jennifer Devereux [mailto:Jennifer.Devereux@n-somerset.gov.uk]

Sent: 08 December 2016 11:15

To: Lillie, Penny/UKS < Penny.Lillie@ch2m.com>

Cc: Linfoot, Andrew/BRS <Andrew.Linfoot@ch2m.com>; Cooper, Robert/UKS <Robert.Cooper@ch2m.com>

Subject: RE: Portishead : highway drainage designs [EXTERNAL]

Thanks Penny

I'll have a word with our drainage team. With regard to your second point do you need details of the system in just the Portishead area, or where there are maintenance access points, at Pill and at Ashton as well.

Kind Regards Jenny

From: Penny.Lillie@ch2m.com [mailto:Penny.Lillie@ch2m.com]

Sent: Thursday, December 08, 2016 10:56 AM

To: Jennifer Devereux < Jennifer. Devereux@n-somerset.gov.uk > **Cc:** Andrew. Linfoot@ch2m.com; Robert. Cooper@ch2m.com

Subject: Portishead: highway drainage designs

Hi Jenny

I'm assisting Andrew and yes thank you that would be very helpful.

We are looking to outfall the carpark catchment area to the Portbury Ditch as shown on the attached. The EA advised, on Tuesday, that the discharge rate will be set by the Lead Local Flood Authority. The only consultation required with the EA will be in obtaining a flood defence permit for the outfall structure.

Also for the remaining new highway catchment areas we propose to tie-in to the existing surface highway drainage system. We have details of the system north of the proposed rail line but not on south side. Wessex water do not own this system so we are assuming it belongs to NSC?

Grateful if you can advise or put me in touch with someone that can.

kind regards

Penny Lillie

Project Engineer

Direct +44 (0)1793 816671 Mobile +44 (0)7547 190959

CH2M

Burderop Park, Swindon, UK SN4 0QD www.ch2m.com

From: Jennifer Devereux [mailto:Jennifer.Devereux@n-somerset.gov.uk]

Sent: 08 December 2016 10:38

To: Linfoot, Andrew/BRS < Andrew.Linfoot@ch2m.com>

Cc: Fabisiak, Magda/BRS < Magda.Fabisiak@ch2m.com >; Lillie, Penny/UKS

<Penny.Lillie@ch2m.com>

Subject: RE: Car park drainage designs [EXTERNAL]

Thanks

If you need me ask our drainage team about the discharge rates or anything else let me know.

Kind Regards Jenny

From: Andrew.Linfoot@ch2m.com [mailto:Andrew.Linfoot@ch2m.com]

Sent: Thursday, December 08, 2016 10:32 AM

To: Jennifer Devereux < <u>Jennifer.Devereux@n-somerset.gov.uk</u> > **Cc:** Magda.Fabisiak@ch2m.com; Penny.Lillie@ch2m.com

Subject: RE: Car park drainage designs

Jenny

We are struggling a bit with this at the moment going round and round; the concept designs are in place, but trying to get someone to decide on discharge rates is proving to be a challenge. The EA now say it is NSC...

We are working on it.

Regards

Andrew Linfoot BA PGDipUD MPhil CMLI Landscape and urban design lead UK D 0117 910 2580 M 07921 495322

CH2M

1 The Square
Temple Quay, Bristol, BS1 6DG
United Kingdom
www.ch2m.com | LinkedIn | Twitter | Facebook

From: Jennifer Devereux [mailto:Jennifer.Devereux@n-somerset.gov.uk]

Sent: 08 December 2016 10:21

To: Linfoot, Andrew/BRS < Andrew.Linfoot@ch2m.com>

Subject: Car park drainage designs [EXTERNAL]

Hi Andrew

I was just wondering when the drainage designs for the Highway elements of MetroWest would be available. We are looking to meet the drainage officers and IDB probably in Feb, so there is no immediate rush, but I know they would like to comment on the outline designs.

Kind Regards Jenny

Jennifer Devereux Transport Policy Officer (MetroWest Phase 1) Development & Environment North Somerset Council

Tel: 01275884052

E-Mail: Jennifer.Devereux@n-somerset.gov.uk

Post: Town Hall, Walliscote Grove Road, Weston-super-Mare, BS23 1UJ

Web: http://secure-

web.cisco.com/13qQppBnFKFMA20JQY8_UC9cfdYrLMnIPfdC5hZUHcNMo9 2aziKkfXUU HvoC4SR8Bx6lsCo-rFx5DRBDvJRniRMYaEI7gt K8-

6jaajKqQMc8hebxOclw4jWeTSAJ0hexHAj-av-

seR_UND69j1mFWh3t8cuXT1BmFF7K8S1QS6ppHBAFm4HgSy64BLPBTU 5eAvyVfRp86_5Jl2rHqRpe4vDWSVKnTM2VHrh6_xhKyWDRnfKg7iVbrljQeG nuctluX_fMVwmPRYs1jVXW4aDZjMRaqt26rZt_QE8yy7nAGqFm9X64Xg7Q5 I5qPmQ05Ems3ZKaV9N9B0KgmrWKNGiJIZXpwWigXpac-pHJfc-

71EOMs9dTgFe3EAHsxQeU1verRGypwG_ACeOaMgCsbvsdnMheNRHwp1 H_vdGAMkTgpZARY5jaY0xtNuEo-g-

<u>zlwgHwch1PH_WKtGc8dGZOn5atlEewr_g3qMHermZo2knA/http%3A%2F%2Fwww.n-somerset.gov.uk</u>

Keeping in touch

Visit http://secure-

web.cisco.com/13qQppBnFKFMA20JQY8_UC9cfdYrLMnIPfdC5hZUHcNMo92azjKkfXUU_HvoC 4SR8Bx6lsCo-rFx5DRBDvJRnjRMYaEI7gt K8- 6jaajKqQMc8hebxOclw4jWeTSAJ0hexHAj-av-seR_UND69j1mFWh3t8cuXT1BmFF7K8S1QS6ppHBAFm4HgSy64BLPBTU5eAvyVfRp86_5JI2rHqRpe4vDWSVKnTM2VHrh6_xhKyWDRnfKg7iVbrljQeGnuctIuX_fMVwmPRYs1jVXW4aDZjMRaqt26rZt_QE8yy7nAGqFm9X64Xg7Q5I5qPmQ05Ems3ZKaV9N9B0KgmrWKNGiJIZXpwWigXpac-pHJfc-

71EOMs9dTgFe3EAHsxQeU1verRGypwG_ACeOaMgCsbvsdnMheNRHwp1H_vdGAMkTgpZARY 5jaY0xtNuEo-g-

Council Connect: for all streets, open spaces and environmental protection enquiries visit http://secure-web.cisco.com/1QOvohxKcBMA30j5U-GEgOIemWVjcprW5-

<u>I9An IT2si8GFVHvS0ze11fkH0AQCbtVO0AlD0RWVGflCtvyaq7LK6iE6dxNSDpAe78QGhizJBM</u>RY7oZe-

 $\frac{rFnho9UzMa2BrQ5lsiLicE93BRVQkoCsxdbYH6hzCTZBxEB8RczB1vGN7cIOzHsalHuHYFHvKpS}{WAEJs_lbaObtO5wU4dHFwZUIKVcOI3ZLcVqG9YLJjMzPC6-OyP3wvkIpJmupcISxQhgBZk-b1APmgDMbeuGkHLxMGCmMQiaOOP7mDGmcwL1QJ7unQpQmMSGtpZTqpVvH4wk5p_V4YCs_dwkNv_HSRgxWsci1Cymb0GmkC7waPpcL4n2t1prtl0c0oNBcmQ_F2pW76Z4Z5jqdU_r1OPVjNh$

EbeujAmg0oq_ttdmpcZ0wAI_LSAfkDnsv09qEqeCPv6V4zXXyYo3kXgU6bmAagxQySULvyOnnLqD5m-FAlk71k/http%3A%2F%2Fwww.n-somerset.gov.uk%2Fconnect

Care Connect: for all adult social services enquiries visit <a href="http://secure-number-num

 $\frac{web.cisco.com/1TxkJYQhBSCAyQWxz386IEkuPXWhZq1AOsmHAATZ4ZIo9NSaEf6yI0cU2Tewrs}{W2Ruf385bA1TJGMt0WUVRfepL\ z8jatQGmwPl6Oq6yT5I-}$

ayojvfwyGanugrYy9rq03Ykvxr YvorSRyeiMFCw6d85gl0t dUblEy340k-

OVQZGtdz2h7z3ihFKrqb8scjKfdWmlQqyOT2GACW1nMiXLtWLj6Z2bGtHVdBvss8HKx55--

W5Mrpi67sllPQcCle5V5lED75aUvH6neYiKeXQndxcUBk0Vl9XSlmq5gAuIzCJN0OadD0Ts8jEZJY I4v6VhVzwmRuLLx-2SMMyzt-jCoq4WG8uKNjWH Y7y6deI25h1HkMw--

77XJ4_HcTfoAMcC0p4K5QT6E1rLjd0FVMBKk8hab6jC95Adeq2dKjV_WXC9tYo17H2l3FMB8NAWNc5xyOCDDmRd2gnSbQgIZrW3W-rtYETAR_jWZVp_p698s/http%3A%2F%2Fwww.n-

somerset.gov.uk%2Fcareconnect

Out of hours emergencies: 01934 622 669

Privacy and confidentiality notice:

The information contained in this email transmission is intended by North Somerset Council for the use of the named individual or entity to which it is directed and may contain information that is privileged or otherwise confidential. If you have received this email transmission in error, please delete it from your system without copying or forwarding it, and notify the sender of the error by reply email. Any views expressed within this message or any other associated files are the views and expressions of the individual and not North Somerset Council. North Somerset Council takes all reasonable precautions to ensure that no viruses are transmitted with any electronic communications sent, however the council can accept no responsibility for any loss or damage resulting directly or indirectly from the use of this email or any contents or attachments.

Keeping in touch

Visit http://secure-web.cisco.com/1-6xhG-F8rR-

 $\frac{MHb4qjuWDksAk3GWbhiwFcMdo_x6_ksuMkExdqLwLGKWG1rWtdUc4Ljk7_4jBeUAC8IM8LIOxXPaCB_vzLZSQ2ZOEF315CArkoJGWLP6Q9Y0hZXdJUNxOGEqI0VyDkUAZIg7GA0BKfCOJgxC1RdNQ60LNQt_UQpijN8hORcrM2FIs190zkOP-$

Aet4bTUUgNvCJWsFRjv6iF3XuM9bNc9Q3Qv4wyEV1OgoUemVeChCRWi0bUJWtMsuGU5xzxMv_iAYoIrD4BMEWtyUhyzJvkc6szW5ASr6RMNV7kKKz7SX244W1gYarcUUzDM0HI6p0yeHTtgFfH7RaNqZOY3br6BhX4WUB33BsXry_Izb4mb9WuP-8YLh-

jxQyLniaxpBGha_EKSo754Gr5jD2bu_zKZG4Q49uEuSvukvkXkPyUNcV3DHXmSmfz29wxiMOliWbwvujq8TfmigCGxgkC_jlztHwoMYfQ7DvtTec/http%3A%2F%2Fwww.n-somerset.gov.uk for information about our services

Council Connect: for all streets, open spaces and environmental protection enquiries visit http://secure-web.cisco.com/1bPKNWuURkRPleDuukZQdsudF3G1Mcd1-

zP7fD7d_t82UJR3VdirfXUr8usiEezaKoh4TVtkCne0oSER2nnCLRvNqhMw3YWVBUsgBfXqJK6ajgloUGIKK3-gdzMNi81S3As3UBbyXw07IHSShztcHEkq-uTsHcAUorK4JS0_7fEt_B9Xbg-

 $\frac{nIOPfsqOt2pqZZ2NBPFN\ ZQjYeUdaW\ ebt6d4B6VOjgz6TxpiLIxsTyEwVG3gKwNliYcLVxDZErOuKzSPmjuASYzOs-$

AqDdmfBeJLToKYH8NsLjYHKt9IbsWdCV5wv4KRja06dVSgrjwIU47AsXkcuce9scUZ3kbmbOItnsOk9pXFw-ZMKArOXW-uJSKyLBEzMlT3HixchQbjAUjGSaZRuuuka89nV_Dcjf8BBTABYSY-UNXfnuJ38V4iel0rl-UUGEilTIyvpGIgG9ox-mXQByZPcJ1buO2tHosuFKUSnXgCR9I2lcFpjZ6E/http%3A%2F%2Fwww.n-

somerset.gov.uk%2Fconnect

Care Connect: for all adult social services enquiries visit http://secure-

 $\frac{web.cisco.com/14CIHALnbUrxSrDI50y4xLQYGh-EqCPJGmZ3fFqTdMeqog0P3b7NDlXBFAhVUtahV8-1ROj3Oawkk2Z9Ac1c1DkZ2kmtXlAExmdqc-$

FJjhSp SiLtm8HCkXVWOO54zFk2sT716Yc3Uu6CwTA0qbpyuHQtY8VE4z1Ua3pSaSgk96gV5tkc2-

KCYEwhh19PE1LPVDg0Utj52uN5wP9s16WxOpZP5YtAOV1dS5EfbiPAL0gEkkZGPSCFTbW1XAUH-

YGOTgYdULz9wWVbgXFSQoIIzJSEMQ6Ym-zJPg1r_THkHHGK-3PzQvoo-

2OwCMfRb6fsvJuCUeznCheWJCcZZxxaSEPXrQrDZlS1TU_gC1hiHvHeBZ3Nlbea6kzpQmZ7czEDlTZl9N8

uzKGwTwAYuKnkQguBu-Jizx-57GP4bhaNlrHBAnPh3tXOirlCdUTpWVuL0UFViUUExZ6ds FFG-

zYsoISjupdgkhCv0ZFqcD08X0/http%3A%2F%2Fwww.n-somerset.gov.uk%2Fcareconnect

Out of hours emergencies: 01934 622 669

Privacy and confidentiality notice:

The information contained in this email transmission is intended by North Somerset Council for the use of the named individual or entity to which it is directed and may contain information that is privileged or otherwise confidential. If you have received this email transmission in error, please delete it from your system without copying or forwarding it, and notify the sender of the error by reply email. Any views expressed within this message or any other associated files are the views and expressions of the individual and not North Somerset Council. North Somerset Council takes all reasonable precautions to ensure that no viruses are transmitted with any electronic communications sent, however the council can accept no responsibility for any loss or damage resulting directly or indirectly from the use of this email or any contents or attachments.

Keeping in touch

Visit http://secure-

web.cisco.com/1qv5re0UX9kp80BLtq90Ewe7lko6LahxXFoujzos xiveVIjVhtQM3ecU6cMqsJrtA0LihAzBrOYGMsH8 Ajm_wiIX_OiaUJIxtZvYHguK5Tw51jz5-G823wT0D9jvZvm2QjD9fjswbtYZ5ceC3BMrpTkf9sbI-

 $\underline{YV41ZvlyqEY94SHtnd0_ADp7x1crJvePyvokjuhY8z28S0yuPU10PGc1frUF9abTG5dABZYjdd64iuFpM4jAxc0JqsBbMwMBxJrdrYr9dLNFkank07mzvchMtit7bTRnUsx-$

7bNFHewMDsxOFCz28z3w9J5xjulMOGQ1W9MoCLZMBJmLMlbmYSIGD-

<u>XtgVFgEW4S7nfgp7ZmSG3aSI0ChwWN37524THXV1OAW3Fa5VFRhK50Vt1pkI6XJgESOSwBuWWxflS84X-krKjv_Hehlw7erF_xuGDbfeSrR7UWeqHZfXJF3hRHp26J-I6zDnCswVtG21UMVk_F-A/http%3A%2F%2Fwww.n-somerset.gov.uk_for_information_about_our_services</u>

 $\underline{web.cisco.com/10pn1WwCIKCxKaIq5vkM1ABLtjZrAj0DLzepLCQ9jVjltvRNnEzXY6cxSR3bBBWtXkfGLwNe8q3EHmMWamrunVfuXT0-kM5BLtMMomM-}$

 $\underline{NR4rXqZF2RFnb6DEBWLpEr9l0U4AtwKvzjN6hcqEH6uG12YskkiVXmHgo7W6rxDjbhb_Giy_bk1zQjgbmJ26PNpU1035UNxAsaq-}$

 $\underline{mmPYhG3Oi6bFijPDeGHRq5o904IPFk7tpLgIPnEoiloIWiHyZv7wudO_AxVUH_iLmMvd1VwocWeyzGg8ZBNIPI3H_h84J0HuQl8qj_ptVP2FveQm6_zh-$

 $\underline{iaozyaF5LjaZ3X96kCe2yuXy1hiDU4jdMViNg} \ dl96dpDpQSHrxHImnGSluc \ 6ttc1c9NbGirQ9DqAPa \ Vyl0L6-\underline{jxeLH6fInl} \ GJJ2BHJKmVpUn-$

 $\underline{birKtchq2cgZgR6yfzY_Uyb6dzPDFTdZEqZBBCzb4yahpLBV11iWsuybZTI/http\%3A\%2F\%2Fwww.nsomerset.gov.uk\%2Fconnect}$

Care Connect: for all adult social services enquiries visit http://secure-web.cisco.com/1S1-8s-

 $\underline{aBul7gz5dbPLWnN9LCMIIfHeB1Tk5r0fG01JrgA6u3my3zxcIJz3Ah3YV6T5xegF4JEUB8ZuQgYUXVfuInc8AIpmFpgmvev2ccbikuuRAPIHVQ9584YiJWDivWPmKTuLIy2BuDJQjTEVmc2DhfAtocfRXpdF96Ilxhog01T1KxeA-$

IZEGG5qhXLyObCBfazdIf4MT8uUNAzL7qnM7bxNt49spPfL1YJgh9Ug3HLodKqA0XOduhUbtaMELXOvcc2pIdLPRvpoQpK5MT-FsNl6YpfGWVmG9g7vyH8 JsCZ1k9Sz7SlSw0-

 $\underline{KtLXhWtGDTZIUHsMyuWO181nnJBgc0kN1D2Hst2erQCBeCYBwIzInFWR6i8Xbu42nj1JZRoJcIJo55qECIorrWp3k}\\ \underline{45mNZYP1IDIZPEm2z6I2c4zakFazBzQI4VwztyE6qNHcMCp0y4UQ8mxs6GQWz1veTPmiLRuACqWKngZBM9X9n}\\ \underline{LiQ/http\%3A\%2F\%2Fwww.n-somerset.gov.uk\%2Fcareconnect}$

Out of hours emergencies: 01934 622 669

Privacy and confidentiality notice:

The information contained in this email transmission is intended by North Somerset Council for the use of the named individual or entity to which it is directed and may contain information that is privileged or otherwise confidential. If you have received this email transmission in error, please delete it from your system without copying or forwarding it, and notify the sender of the error by reply email. Any views expressed within this message or any other associated files are the views and expressions of the individual and not North Somerset Council. North Somerset Council takes all reasonable precautions to ensure that no viruses are transmitted with any electronic communications sent, however the

council can accept no responsibility for any loss or damage resulting directly or indirectly from the use of this email or any contents or attachments.

Keeping in touch

Visit http://secure-

 $\underline{web.cisco.com/1e6JeQw3OUX_ABq3L30U1ZGoL_NPVtkuJ8nUgNGB0gJbQFVE7Z9YLa_CDPAlFHeEL9kf729paA286Zvwxt}\\ \underline{oWnOuRBzyQlYiW0rKStZ3LAQ3QR6ZK0RAAJi2jE6c0ekPkWuTayim-zKShX9jlRWyUBrq3NiWZmZJekOmY0tGHHj-QuCUVwne8b-}$

<u>AjepZTRRMQCcpdGIVyENBUcyi8WN2NqIdqh16FJ4SVF8KPXPF2ttADliQieLMngZZsG1GqzEfVxYdHZogdAEjzcjolKHjPgER8g8BME 607DVG60OBYX3vGDuoEAEoLThxdObNcEMJMqltV0q-K 10UKoSa0R2Mwuw8I-</u>

 $\underline{D_b2vWSopjgRf2qQDAAK40WqeZzJ1aEsnu0CnfXPtxuiNjKH0UORY3wvY6ofgc6T_0LJ2wrZ0DKbJfqb6K14QzuXXb5K9ig\underline{mSh1yq_2H9krkx9qCBO9ptJPZ8Yy5x7I0A20igHJjX-0RqL0/http%3A%2F%2Fwww.n-somerset.gov.uk} \ for information about our services$

Council Connect: for all streets, open spaces and environmental protection enquiries visit www.n-somerset.gov.uk/connect

Care Connect: for all adult social services enquiries visit www.n-somerset.gov.uk/careconnect

Out of hours emergencies: 01934 622 669

Privacy and confidentiality notice:

The information contained in this email transmission is intended by North Somerset Council for the use of the named individual or entity to which it is directed and may contain information that is privileged or otherwise confidential. If you have received this email transmission in error, please delete it from your system without copying or forwarding it, and notify the sender of the error by reply email. Any views expressed within this message or any other associated files are the views and expressions of the individual and not North Somerset Council. North Somerset Council takes all reasonable precautions to ensure that no viruses are transmitted with any electronic communications sent, however the council can accept no responsibility for any loss or damage resulting directly or indirectly from the use of this email or any contents or attachments.

Lillie, Penny/UKS

From: Vasilyev, Kostya/UKS
Sent: 18 January 2017 13:36
To: Lillie, Penny/UKS

Cc: Cooper, Robert/UKS; Bird, Robert/UKS
Subject: RE: Portishead -tide locked level

Attachments: Scanned from a Xerox Multifunction Printer.pdf

Penny

Thank you for your enquiry.

Following the location of points on the scan sent to me and Robert Bird on 16/01/2017 13:13 by Robert Cooper, I can say that the water levels for the 25 year and 50 year events (climate change scenario) are as follows:

The **left point** as per the scan referenced above (please also find it attached) (near the drain, the location is to the south of Harbour Road):

50 year event: 7.05m 25 year event: 4.85m

The levels are the same for both pre-development and post development situation for each of the return periods listed above.

It looks like the water stays within the ditch or is not overtopping the planned ground levels (in post development situation).

There is no water level information in the model for the right point (to the north of Phoenix Road).

In order to provide some estimate for this point we looked at the downstream end of this drain (at its confluence with the Portbury? Drain, the location is to the east of Newfoundland Way, see the red star on the map below). These levels will provide a very conservative approximation of levels at the right point on the scan provided. Taking this information from the downstream end of this drain allows us to estimate levels further upstream of this drain as this drain is not represented in a model.

The downstream side of the brook that flows by the right point:

50 year event:

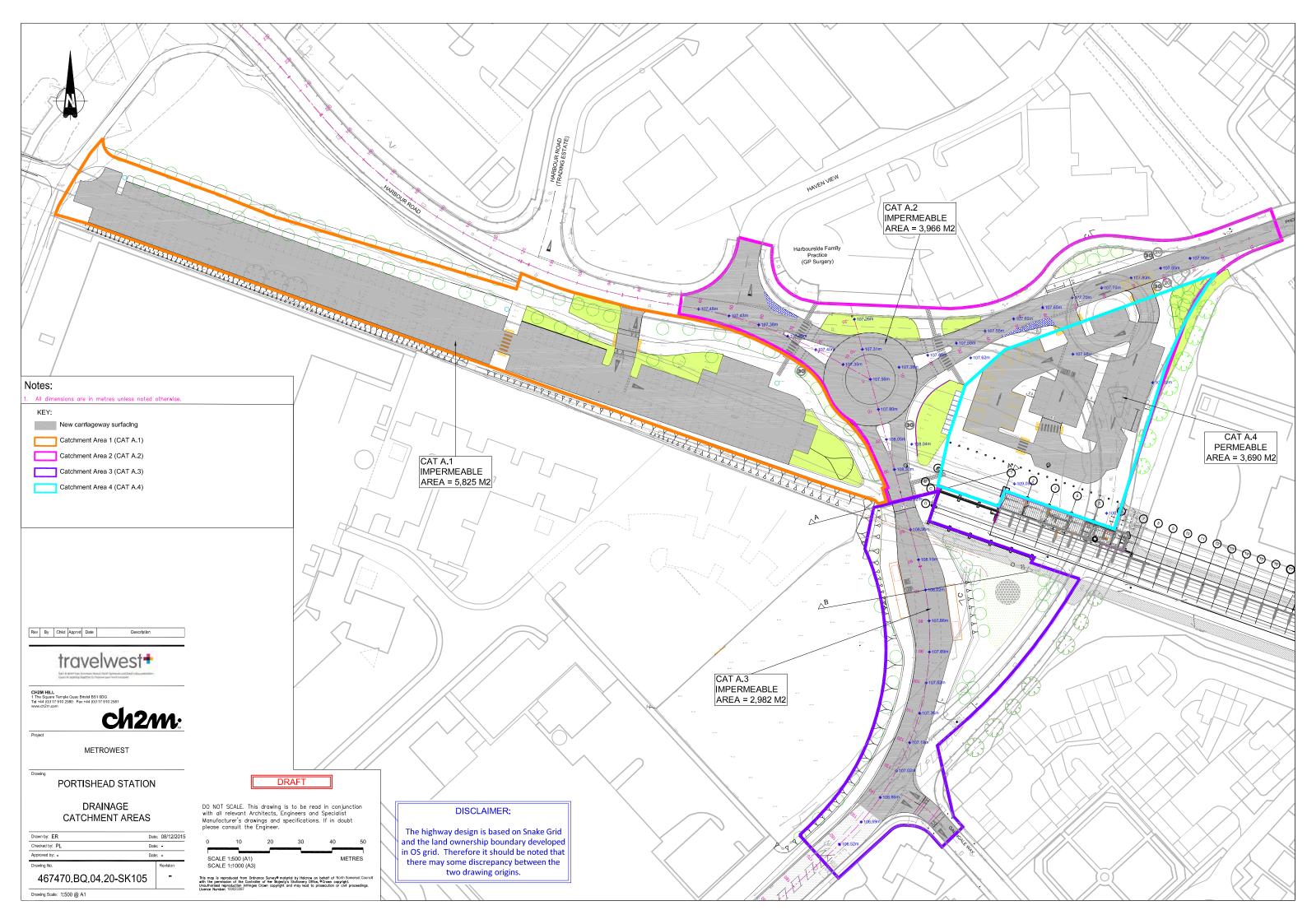
7.06m (post development situation)

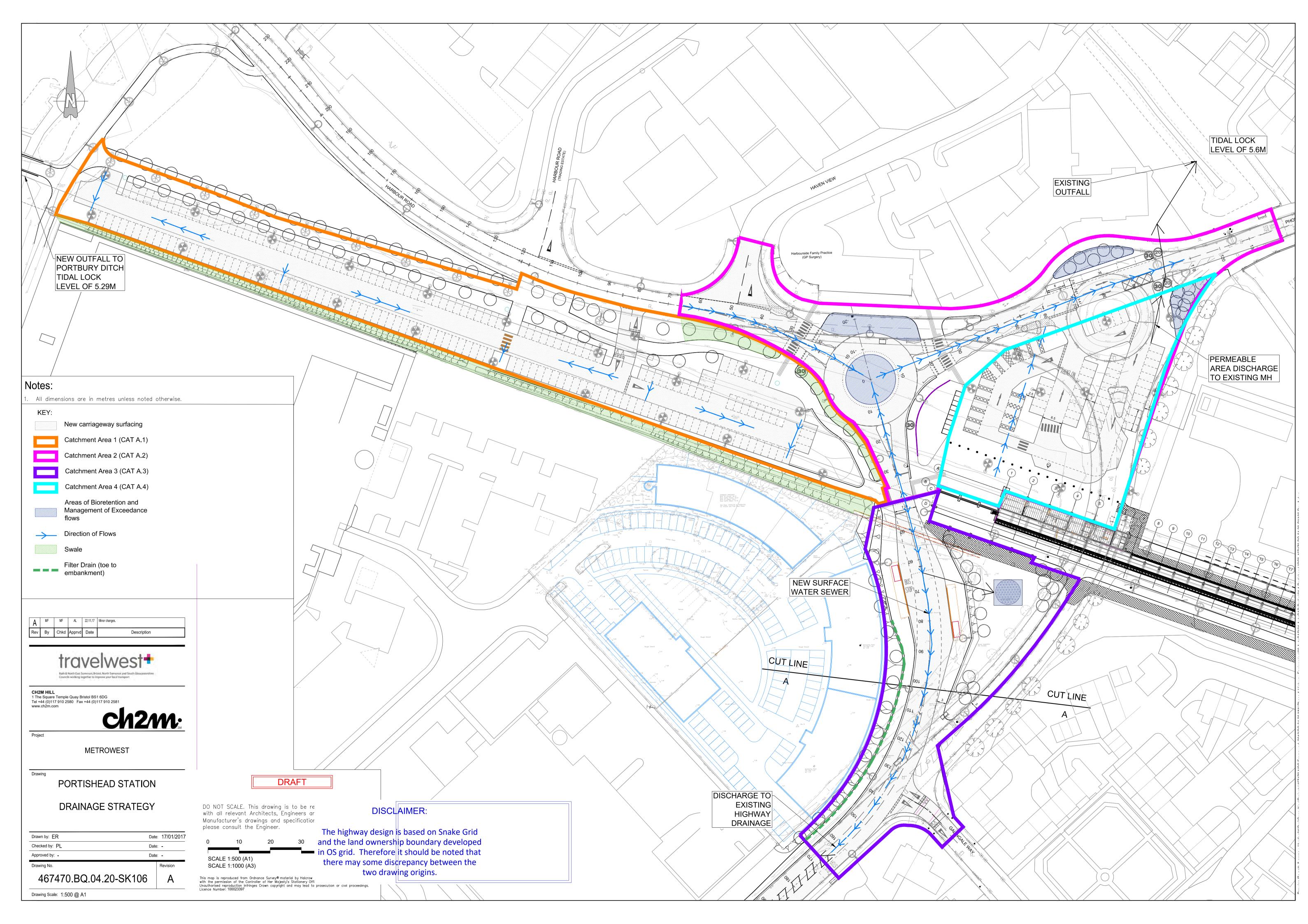
7.05m (pre-development situation)

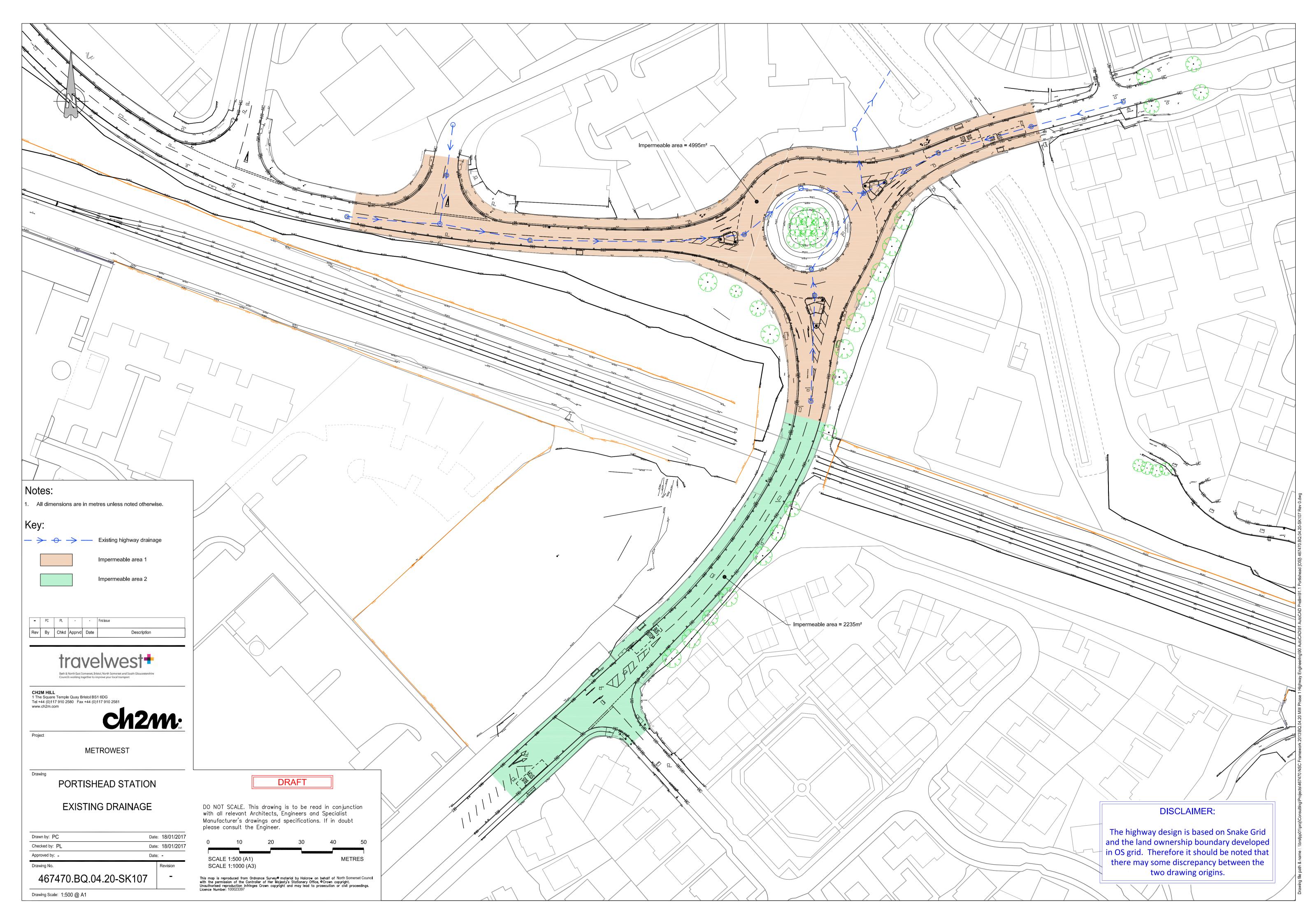
25 year event:

5.24m (both pre and post development situation)

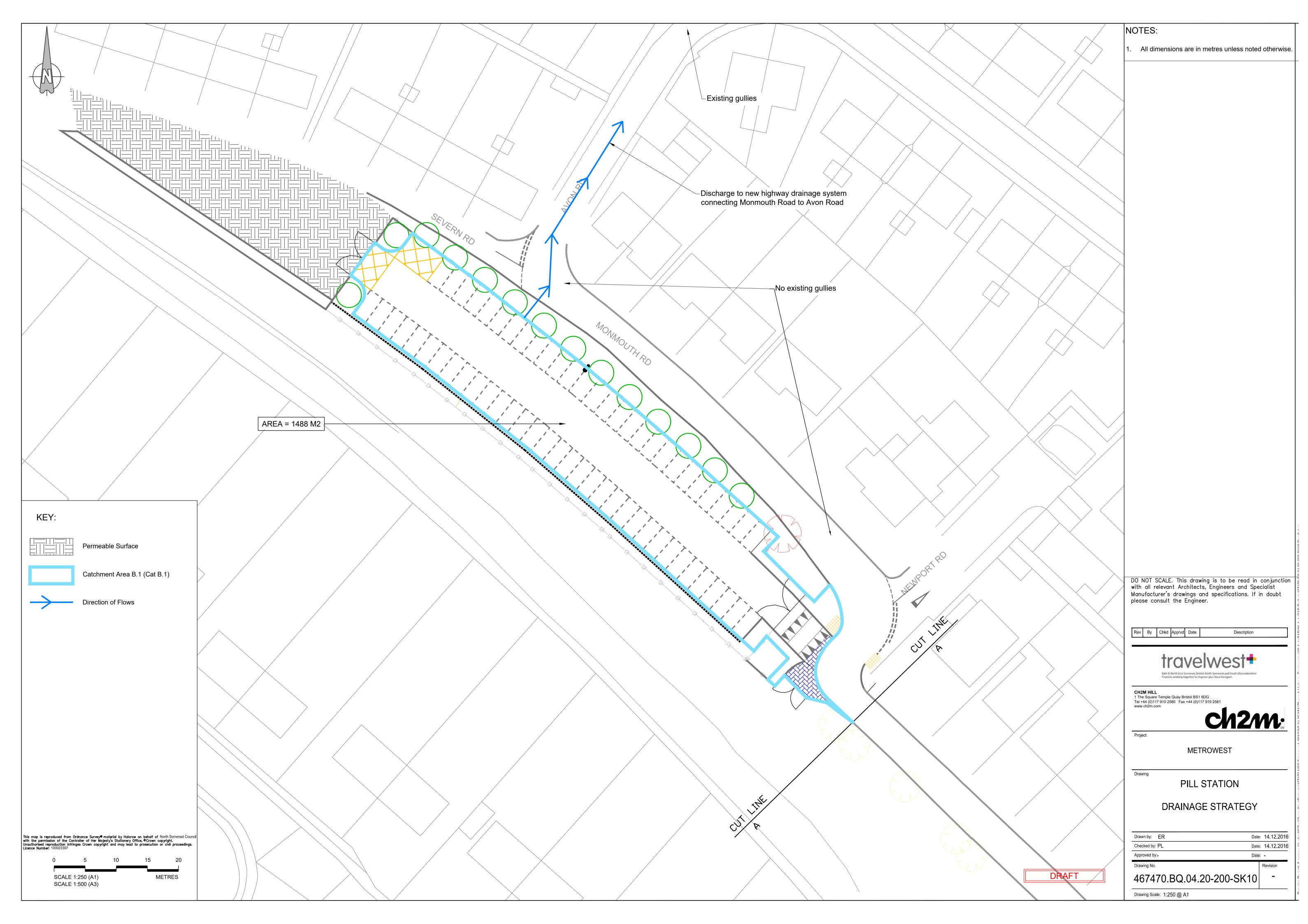
It looks like the water stays within the ditch or is not overtopping the planned ground levels (in post development situation).

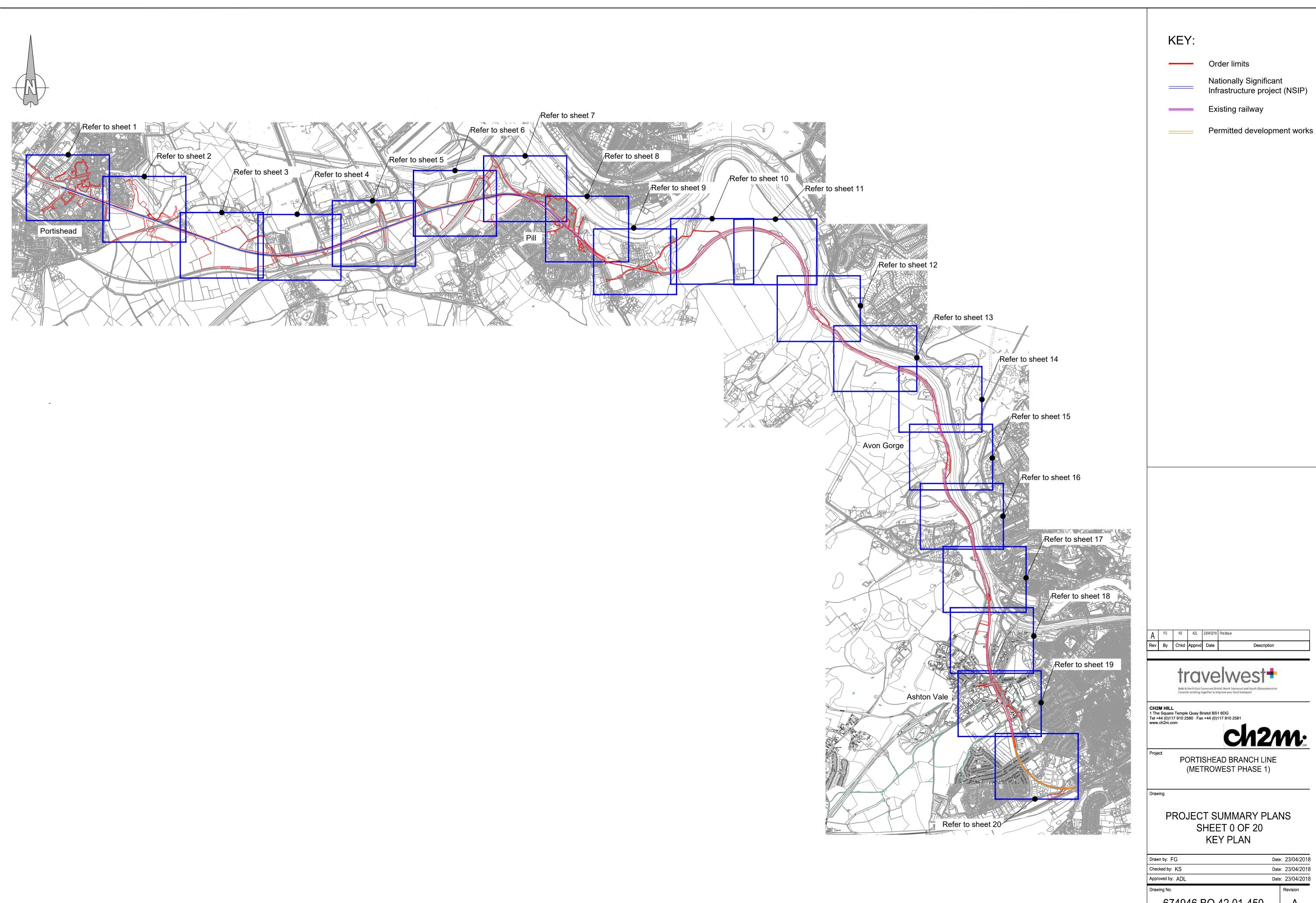

Hope it helps.


Please let us know if there are more questions.


Many thanks.

Kind regards


Appendix B



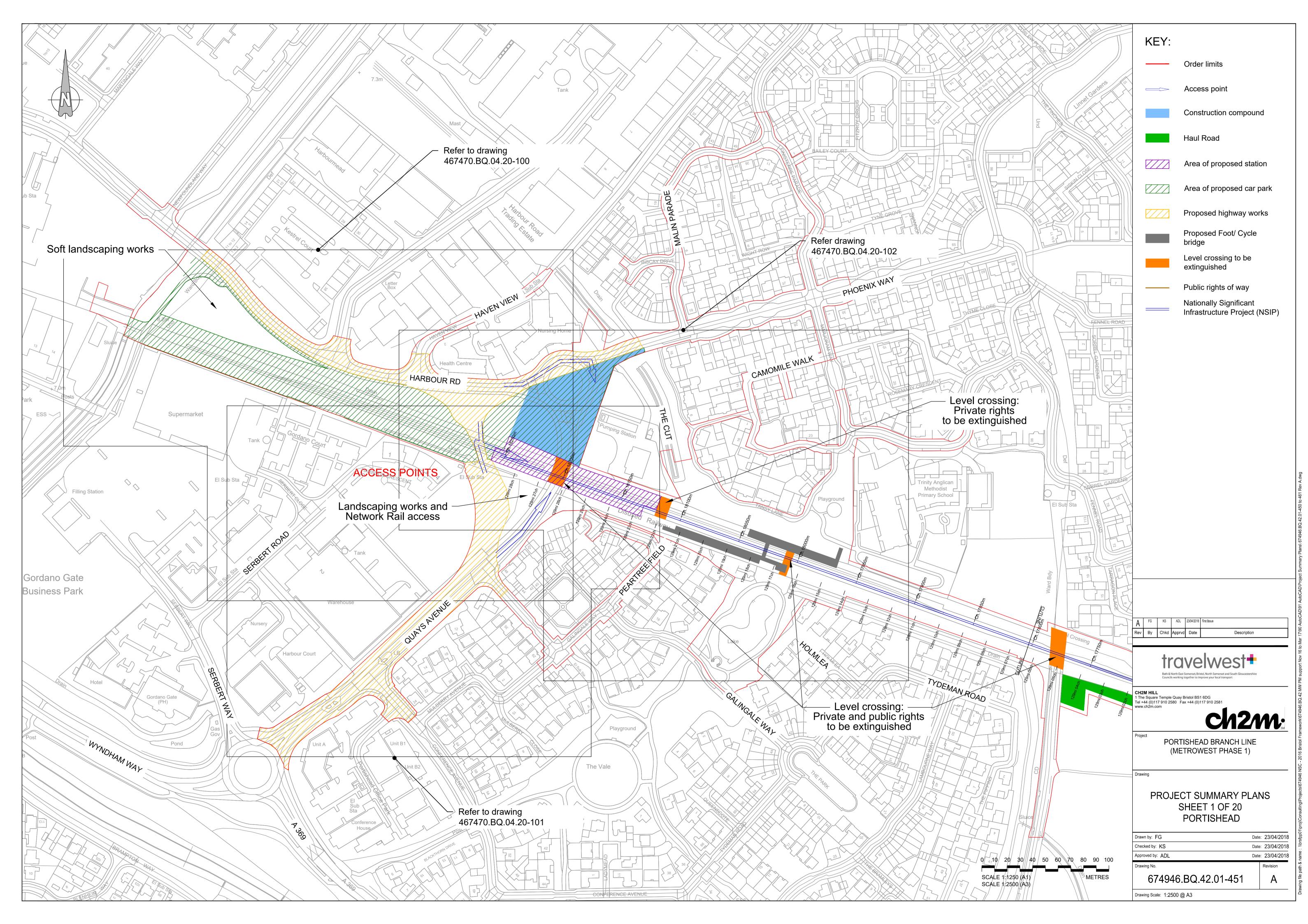
Appendix C

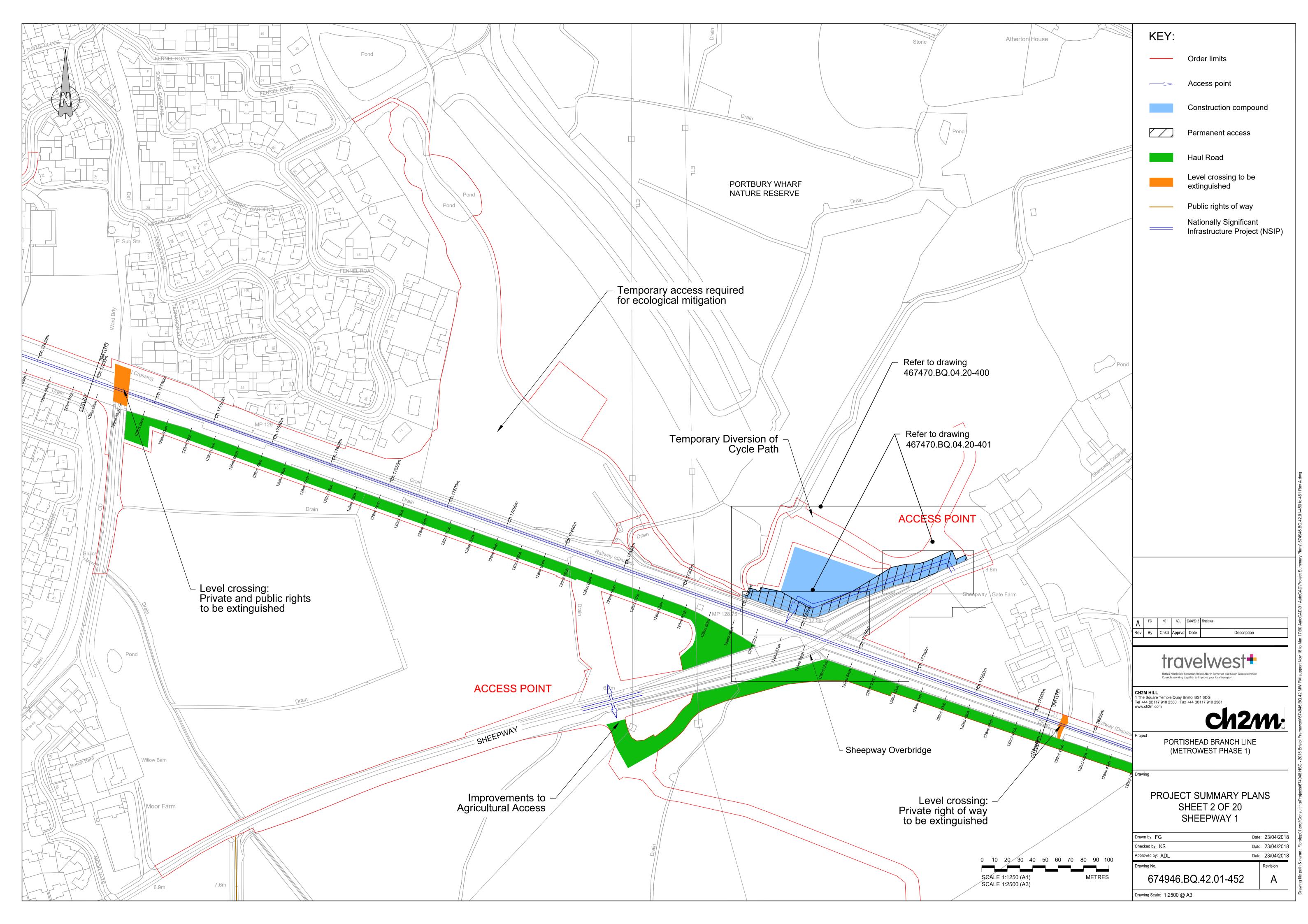
APPENDIX H

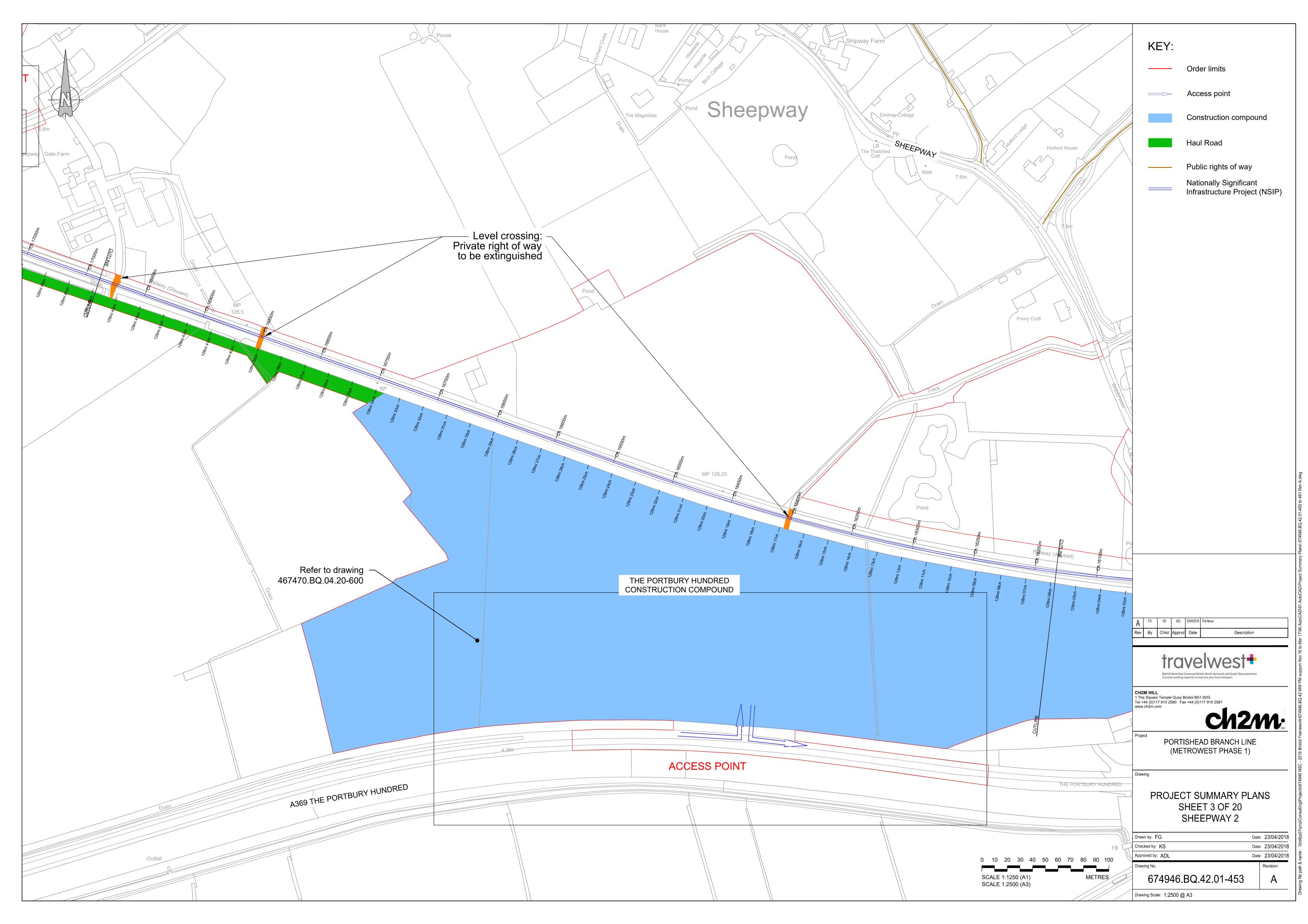
Project Summary Plans

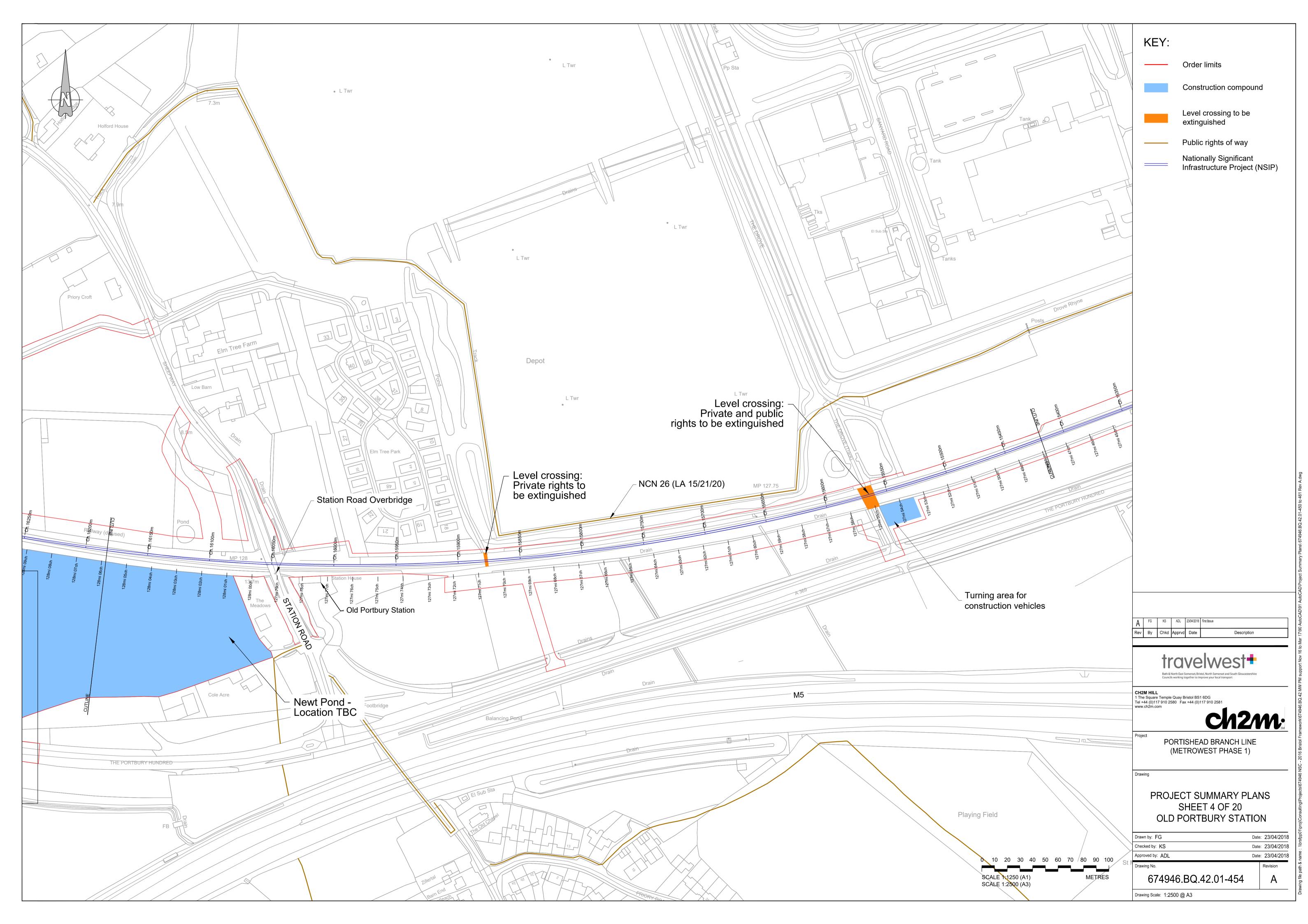
Nationally Significant Infrastructure project (NSIP)

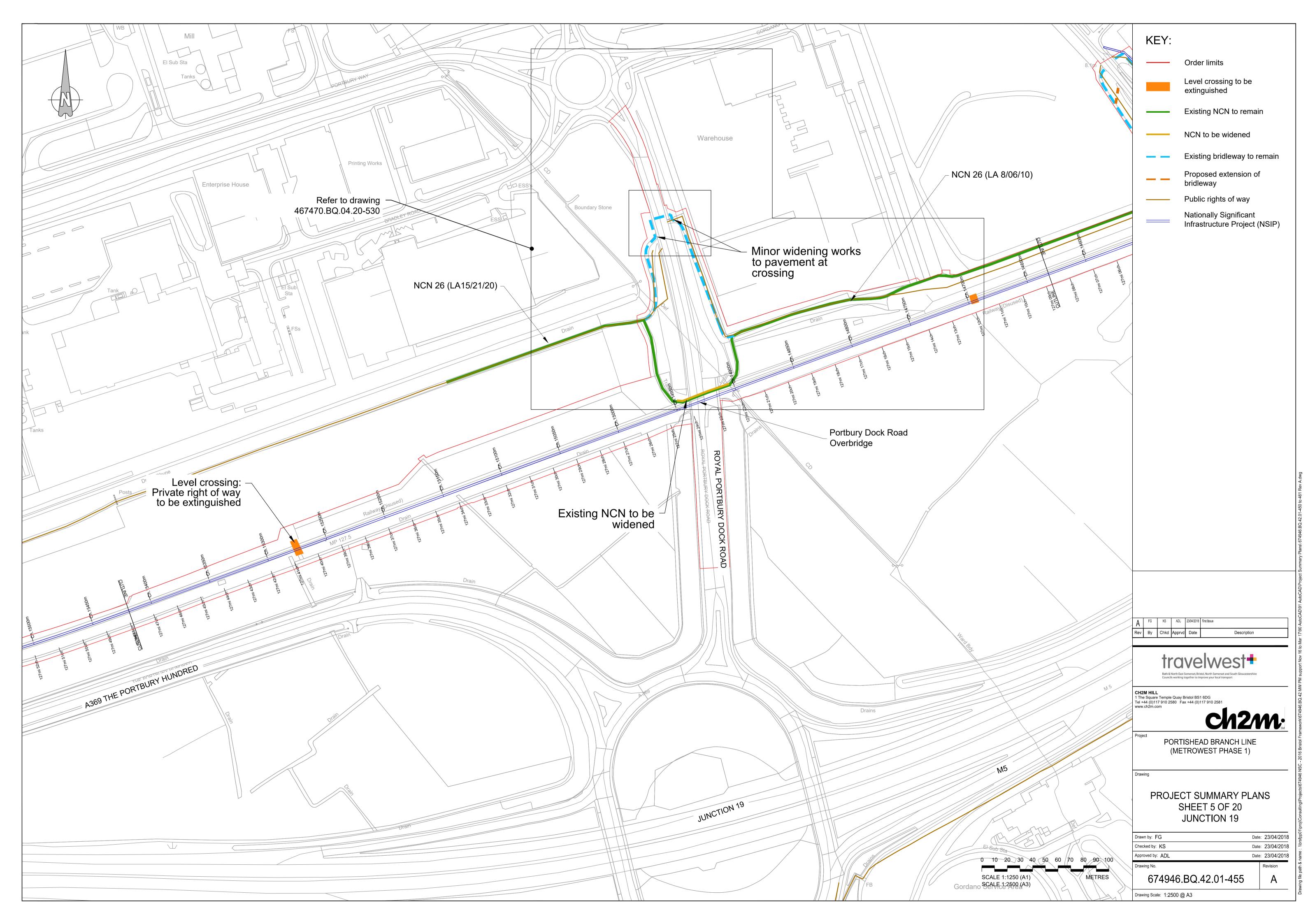
Description


(METROWEST PHASE 1)


PROJECT SUMMARY PLANS


Drawn by: FG	Date: 23/04/2018
Checked by: KS	Date: 23/04/2018
Approved by: ADL	Date: 23/04/2018
Drawing No.	Revision


674946.BQ.42.01-450


Drawing Scale: 1:32000 @ A3

